88 research outputs found

    Virtual Team Leader Communication:Employee Perception and Organizational Reality

    Get PDF
    Based on a study of leader communication effectiveness conducted in a large human resource outsourcing firm, this article reports how virtual team members’ perceptions of their leaders’ effective use of communication tools and techniques affect team performance outcomes. The study also investigates the role that trust plays in moderating the relationship between virtual team members’ perceptions of their leaders’ effective use of communication and team performance. Analysis of 458 responses from 68 teams found a positive relationship between virtual team members’ perceptions of leaders’ effective use of communications and team members’ perception of their team’s performance. The study also found that trust strengthens the relationship between perceived leader communication effectiveness and team performance results. Last, the study also revealed serious organizational alignment issues between what team members perceived to be effective leader communication, their perception of team performance outcomes, and the organizations performance measured by a balanced scorecard

    Organizational and Supervisory Apology Effectiveness: Apology Giving in Work Settings

    Get PDF
    We synthesize the interdisciplinary literature into a heuristic for crafting effective organizational and supervisory apologies (the OOPS four-component apology). In the first experiment, we demonstrate how an offense committed by an organization is perceived to be more egregious than an offense committed by a friend or supervisor. Furthermore, results did not support that OOPS apologies are unequally effective if issued by a friend, supervisor, or organization. In the second experiment, we test OOPS apology-training effectiveness. Results indicated that trained participants crafted more effective apologies. Our apology heuristic is an innovation for training business communicators how to apologize effectively.Yeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline

    Weak-lensing mass calibration of redMaPPer galaxy clusters in Dark Energy Survey Science Verification data

    Get PDF
    We use weak-lensing shear measurements to determine the mean mass of optically selected galaxy clusters in Dark Energy Survey Science Verification data. In a blinded analysis, we split the sample of more than 8000 redMaPPer clusters into 15 subsets, spanning ranges in the richness parameter 5 ≤ λ ≤ 180 and redshift 0.2 ≤ z ≤ 0.8, and fit the averaged mass density contrast profiles with a model that accounts for seven distinct sources of systematic uncertainty: shear measurement and photometric redshift errors; clustermember contamination; miscentring; deviations from the NFW halo profile; halo triaxiality and line-of-sight projections. We combine the inferred cluster masses to estimate the joint scaling relation between mass, richness and redshift, M(λ, z) ∝ M0λF (1 + z) G. We find M0 ≡ (M200m | λ = 30, z = 0.5) = [2.35 ± 0.22 (stat) ± 0.12 (sys)] × 1014 M., with F = 1.12 ± 0.20 (stat) ± 0.06 (sys) and G = 0.18 ± 0.75 (stat) ± 0.24 (sys). The amplitude of the mass–richness relation is in excellent agreement with the weak-lensing calibration of redMaPPer clusters in SDSS by Simet et al. and with the Saro et al. calibration based on abundance matching of SPT-detected clusters. Our results extend the redshift range over which the mass–richness relation of redMaPPer clusters has been calibrated with weak lensing from z ≤ 0.3 to z ≤ 0.8. Calibration uncertainties of shear measurements and photometric redshift estimates dominate our systematic error budget and require substantial improvements for forthcoming studies

    Joint analysis of galaxy-galaxy lensing and galaxy clustering: methodology and forecasts for dark energy survey

    Get PDF
    The joint analysis of galaxy-galaxy lensing and galaxy clustering is a promising method for inferring the growth function of large-scale structure. Anticipating a near future application of this analysis to Dark Energy Survey (DES) measurements of galaxy positions and shapes, we develop a practical approach to modeling the assumptions and systematic effects affecting the joint analysis of small-scale galaxy-galaxy lensing and large-scale galaxy clustering. Introducing parameters that characterize the halo occupation distribution (HOD), photometric redshift uncertainties, and shear measurement errors, we study how external priors on different subsets of these parameters affect our growth constraints. Degeneracies within the HOD model, as well as between the HOD and the growth function, are identified as the dominant source of complication, with other systematic effects being subdominant. The impact of HOD parameters and their degeneracies necessitate the detailed joint modeling of the galaxy sample that we employ. We conclude that DES data will provide powerful constraints on the evolution of structure growth in the Universe, conservatively/optimistically constraining the growth function to 7.9%/4.8% with its first-year data that cover over 1000 square degrees, and to 3.9%/2.3% with its full five-year data that will survey 5000 square degrees, including both statistical and systematic uncertainties

    Cosmic Voids and Void Lensing in the Dark Energy Survey Science Verification Data

    Get PDF
    Galaxies and their dark matter halos populate a complicated filamentary network around large, nearly empty regions known as cosmic voids. Cosmic voids are usually identified in spectroscopic galaxy surveys, where 3D information about the large-scale structure of the Universe is available. Although an increasing amount of photometric data is being produced, its potential for void studies is limited since photometric redshifts induce line-of-sight position errors of 50\sim50 Mpc/hh or more that can render many voids undetectable. In this paper we present a new void finder designed for photometric surveys, validate it using simulations, and apply it to the high-quality photo-zz redMaGiC galaxy sample of the Dark Energy Survey Science Verification (DES-SV) data. The algorithm works by projecting galaxies into 2D slices and finding voids in the smoothed 2D galaxy density field of the slice. Fixing the line-of-sight size of the slices to be at least twice the photo-zz scatter, the number of voids found in these projected slices of simulated spectroscopic and photometric galaxy catalogs is within 20% for all transverse void sizes, and indistinguishable for the largest voids of radius 70\sim 70 Mpc/hh and larger. The positions, radii, and projected galaxy profiles of photometric voids also accurately match the spectroscopic void sample. Applying the algorithm to the DES-SV data in the redshift range 0.2<z<0.80.2<z<0.8, we identify 87 voids with comoving radii spanning the range 18-120 Mpc/hh, and carry out a stacked weak lensing measurement. With a significance of 4.4σ4.4\sigma, the lensing measurement confirms the voids are truly underdense in the matter field and hence not a product of Poisson noise, tracer density effects or systematics in the data. It also demonstrates, for the first time in real data, the viability of void lensing studies in photometric surveys

    Imprint of DES superstructures on the cosmic microwave background

    Get PDF
    Small temperature anisotropies in the cosmic microwave background (CMB) can be sourced by density perturbations via the late-time integrated Sachs-Wolfe (ISW) effect. Large voids and superclusters are excellent environments to make a localized measurement of this tiny imprint. In some cases excess signals have been reported. We probed these claims with an independent data set, using the first year data of the Dark Energy Survey (DES) in a different footprint, and using a different superstructure finding strategy. We identified 52 large voids and 102 superclusters at redshifts 0.2 < z < 0.65. We used the Jubilee simulation to a priori evaluate the optimal ISW measurement configuration for our compensated top-hat filtering technique, and then performed a stacking measurement of the CMB temperature field based on the DES data. For optimal configurations, we detected a cumulative cold imprint of voids with DeltaTf ≈ -5.0 ± 3.7 muK and a hot imprint of superclusters DeltaTf ≈ 5.1 ± 3.2 muK; this is ˜1.2sigma higher than the expected |DeltaTf| ≈ 0.6 muK imprint of such superstructures in Lambda cold dark matter (LambdaCDM). If we instead use an a posteriori selected filter size (R/Rv = 0.6), we can find a temperature decrement as large as DeltaTf ≈ -9.8 ± 4.7 muK for voids, which is ˜2sigma above LambdaCDM expectations and is comparable to previous measurements made using Sloan Digital Sky Survey superstructure data

    Millennials in the Workplace: A Communication Perspective on Millennials’ Organizational Relationships and Performance

    Get PDF
    Stereotypes about Millennials, born between 1979 and 1994, depict them as self-centered, unmotivated, disrespectful, and disloyal, contributing to widespread concern about how communication with Millennials will affect organizations and how they will develop relationships with other organizational members. We review these purported characteristics, as well as Millennials’ more positive qualities—they work well in teams, are motivated to have an impact on their organizations, favor open and frequent communication with their supervisors, and are at ease with communication technologies. We discuss Millennials’ communicated values and expectations and their potential effect on coworkers, as well as how workplace interaction may change Millennials

    The DES Science Verification weak lensing shear catalogues

    Get PDF
    We present weak lensing shear catalogues for 139 square degrees of data taken during the Science Verification (SV) time for the new Dark Energy Camera (DECam) being used for the Dark Energy Survey (DES). We describe our object selection, point spread function estimation and shear measurement procedures using two independent shear pipelines, IM3SHAPE and NGMIX, which produce catalogues of 2.12 million and 3.44 million galaxies respectively. We detail a set of null tests for the shear measurements and find that they pass the requirements for systematic errors at the level necessary for weak lensing science applications using the SV data. We also discuss some of the planned algorithmic improvements that will be necessary to produce sufficiently accurate shear catalogues for the full 5-year DES, which is expected to cover 5000 square degrees

    Cosmology from cosmic shear with Dark Energy Survey science verification data

    Get PDF
    We present the first constraints on cosmology from the Dark Energy Survey (DES), using weak lensing measurements from the preliminary Science Verification (SV) data. We use 139 square degrees of SV data, which is less than 3% of the full DES survey area. Using cosmic shear 2-point measurements over three redshift bins we find sigma8(Omegam/0.3 )0.5=0.81 ±0.06 (68% confidence), after marginalizing over 7 systematics parameters and 3 other cosmological parameters. We examine the robustness of our results to the choice of data vector and systematics assumed, and find them to be stable. About 20% of our error bar comes from marginalizing over shear and photometric redshift calibration uncertainties. The current state-of-the-art cosmic shear measurements from CFHTLenS are mildly discrepant with the cosmological constraints from Planck CMB data; our results are consistent with both data sets. Our uncertainties are ˜30 % larger than those from CFHTLenS when we carry out a comparable analysis of the two data sets, which we attribute largely to the lower number density of our shear catalogue. We investigate constraints on dark energy and find that, with this small fraction of the full survey, the DES SV constraints make negligible impact on the Planck constraints. The moderate disagreement between the CFHTLenS and Planck values of sigma8(Omegam/0.3 )0.5 is present regardless of the value of w
    corecore