26 research outputs found
Disparate Functional Responses to β-adrenergic and Ischaemic Challenge in Male and Female Hypertrophic Cardiomyocytes
Cardiac hypertrophy is the most potent cardiovascular risk factor after age, with relative mortality risk greater in women. The cognate issue of whether ischaemia coincident with hypertrophic co-morbidity has differing gender aetiology/outcome has not been addressed. We used a novel polygenic model of hypertrophy to examine male/female cellular stress responses in normal and hypertrophic cardiomyocytes.Centro de Investigaciones Cardiovasculare
Altered cardiac structure and function is related to seizure frequency in a rat model of chronic acquired temporal lobe epilepsy
Objective: This study aimed to prospectively examine cardiac structure and function in the kainic acid-induced post-status epilepticus (post-KA SE) model of chronic acquired temporal lobe epilepsy (TLE), specifically to examine for changes between the pre-epileptic, early epileptogenesis and the chronic epilepsy stages. We also aimed to examine whether any changes related to the seizure frequency in individual animals. Methods: Four hours of SE was induced in 9 male Wistar rats at 10 weeks of age, with 8 saline treated matched control rats. Echocardiography was performed prior to the induction of SE, two- and 10-weeks post-SE. Two weeks of continuous video-EEG and simultaneous ECG recordings were acquired for two weeks from 11 weeks post-KA SE. The video-EEG recordings were analyzed blindly to quantify the number and severity of spontaneous seizures, and the ECG recordings analyzed for measures of heart rate variability (HRV). PicroSirius red histology was performed to assess cardiac fibrosis, and intracellular Ca2+ levels and cell contractility were measured by microfluorimetry. Results: All 9 post-KA SE rats were demonstrated to have spontaneous recurrent seizures on the two-week video-EEG recording acquired from 11 weeks SE (seizure frequency ranging from 0.3 to 10.6 seizures/day with the seizure durations from 11 to 62 s), and none of the 8 control rats. Left ventricular wall thickness was thinner, left ventricular internal dimension was shorter, and ejection fraction was significantly decreased in chronically epileptic rats, and was negatively correlated to seizure frequency in individual rats. Diastolic dysfunction was evident in chronically epileptic rats by a decrease in mitral valve deceleration time and an increase in E/E` ratio. Measures of HRV were reduced in the chronically epileptic rats, indicating abnormalities of cardiac autonomic function. Cardiac fibrosis was significantly increased in epileptic rats, positively correlated to seizure frequency, and negatively correlated to ejection fraction. The cardiac fibrosis was not a consequence of direct effect of KA toxicity, as it was not seen in the 6/10 rats from separate cohort that received similar doses of KA but did not go into SE. Cardiomyocyte length, width, volume, and rate of cell lengthening and shortening were significantly reduced in epileptic rats. Significance: The results from this study demonstrate that chronic epilepsy in the post-KA SE rat model of TLE is associated with a progressive deterioration in cardiac structure and function, with a restrictive cardiomyopathy associated with myocardial fibrosis. Positive correlations between seizure frequency and the severity of the cardiac changes were identified. These results provide new insights into the pathophysiology of cardiac disease in chronic epilepsy, and may have relevance for the heterogeneous mechanisms that place these people at risk of sudden unexplained death
Male and female hypertrophic rat cardiac myocyte functional responses to ischemic stress and β-adrenergic challenge are different
Background: Cardiac hypertrophy is the most potent cardiovascular risk factor after age, and relative mortality risk linked with cardiac hypertrophy is greater in women. Ischemic heart disease is the most common form of cardiovascular pathology for both men and women, yet significant differences in incidence and outcomes exist between the sexes. Cardiac hypertrophy and ischemia are frequently occurring dual pathologies. Whether the cellular (cardiomyocyte) mechanisms underlying myocardial damage differ in women and men remains to be determined. In this study, utilizing an in vitro experimental approach, our goal was to examine the proposition that responses of male/female cardiomyocytes to ischemic (and adrenergic) stress may be differentially modulated by the presence of pre-existing cardiac hypertrophy.
Methods: We used a novel normotensive custom-derived hypertrophic heart rat (HHR; vs control strain normal heart rat (NHR)). Cardiomyocyte morphologic and electromechanical functional studies were performed using microfluorimetric techniques involving simulated ischemia/reperfusion protocols.
Results: HHR females exhibited pronounced cardiac/cardiomyocyte enlargement, equivalent to males. Under basal conditions, a lower twitch amplitude in female myocytes was prominent in normal but not in hypertrophic myocytes. The cardiomyocyte Ca2+ responses to β-adrenergic challenge differed in hypertrophic male and female cardiomyocytes, with the accentuated response in males abrogated in females - even while contractile responses were similar. In simulated ischemia, a marked and selective elevation of end-ischemia Ca2+ in normal female myocytes was completely suppressed in hypertrophic female myocytes - even though all groups demonstrated similar shifts in myocyte contractile performance. After 30 min of simulated reperfusion, the Ca2+ desensitization characterizing the male response was distinctively absent in female cardiomyocytes.
Conclusions: Our data demonstrate that cardiac hypertrophy produces dramatically different basal and stress-induced pathophenotypes in female- and male-origin cardiomyocytes. The lower Ca2+ operational status characteristic of female (vs male) cardiomyocytes comprising normal hearts is not exhibited by myocytes of hypertrophic hearts. After ischemia/reperfusion, availability of activator Ca2+ is suppressed in female hypertrophic myocytes, whereas sensitivity to Ca2+ is blunted in male hypertrophic myocytes. These findings demonstrate that selective intervention strategies should be pursued to optimize post-ischemic electromechanical support for male and female hypertrophic hearts.Facultad de Ciencias MédicasCentro de Investigaciones Cardiovasculare
Experimental and Human Evidence for Lipocalin-2 (Neutrophil Gelatinase-Associated Lipocalin [NGAL]) in the Development of Cardiac Hypertrophy and heart failure
Background-Cardiac hypertrophy increases the risk of developing heart failure and cardiovascular death. The neutrophil inflammatory protein, lipocalin-2 (LCN2/NGAL), is elevated in certain forms of cardiac hypertrophy and acute heart failure. However, a specific role for LCN2 in predisposition and etiology of hypertrophy and the relevant genetic determinants are unclear. Here, we defined the role of LCN2 in concentric cardiac hypertrophy in terms of pathophysiology, inflammatory expression networks, and genomic determinants. Methods and Results-We used 3 experimental models: a polygenic model of cardiac hypertrophy and heart failure, a model of intrauterine growth restriction and Lcn2-knockout mouse; cultured cardiomyocytes; and 2 human cohorts: 114 type 2 diabetes mellitus patients and 2064 healthy subjects of the YFS (Young Finns Study). In hypertrophic heart rats, cardiac and circulating Lcn2 was significantly overexpressed before, during, and after development of cardiac hypertrophy and heart failure. Lcn2 expression was increased in hypertrophic hearts in a model of intrauterine growth restriction, whereas Lcn2-knockout mice had smaller hearts. In cultured cardiomyocytes, Lcn2 activated molecular hypertrophic pathways and increased cell size, but reduced proliferation and cell numbers. Increased LCN2 was associated with cardiac hypertrophy and diastolic dysfunction in diabetes mellitus. In the YFS, LCN2 expression was associated with body mass index and cardiac mass and with levels of inflammatory markers. The single-nucleotide polymorphism, rs13297295, located near LCN2 defined a significant cis-eQTL for LCN2 expression. Conclusions-Direct effects of LCN2 on cardiomyocyte size and number and the consistent associations in experimental and human analyses reveal a central role for LCN2 in the ontogeny of cardiac hypertrophy and heart failure.Peer reviewe
Quantitative polarized phase microscopy for birefringence imaging
A novel application of quantitative phase imaging under linearly polarized light is introduced for studying unstained anisotropic live cells. The method is first validated as a technique for mapping the two-dimensional retardation distribution of a well-characterized optical fiber and is then applied to the characterization of unstained isolated cardiac cells. The experimental retardation measurements are in very good agreement with the established Brace-K hler method, and additionally provide spatially resolved cell birefringence and phase data
Male and female hypertrophic rat cardiac myocyte functional responses to ischemic stress and β-adrenergic challenge are different
Background: Cardiac hypertrophy is the most potent cardiovascular risk factor after age, and relative mortality risk linked with cardiac hypertrophy is greater in women. Ischemic heart disease is the most common form of cardiovascular pathology for both men and women, yet significant differences in incidence and outcomes exist between the sexes. Cardiac hypertrophy and ischemia are frequently occurring dual pathologies. Whether the cellular (cardiomyocyte) mechanisms underlying myocardial damage differ in women and men remains to be determined. In this study, utilizing an in vitro experimental approach, our goal was to examine the proposition that responses of male/female cardiomyocytes to ischemic (and adrenergic) stress may be differentially modulated by the presence of pre-existing cardiac hypertrophy. Methods: We used a novel normotensive custom-derived hypertrophic heart rat (HHR; vs control strain normal heart rat (NHR)). Cardiomyocyte morphologic and electromechanical functional studies were performed using microfluorimetric techniques involving simulated ischemia/reperfusion protocols. Results: HHR females exhibited pronounced cardiac/cardiomyocyte enlargement, equivalent to males. Under basal conditions, a lower twitch amplitude in female myocytes was prominent in normal but not in hypertrophic myocytes. The cardiomyocyte Ca2+ responses to β-adrenergic challenge differed in hypertrophic male and female cardiomyocytes, with the accentuated response in males abrogated in females - even while contractile responses were similar. In simulated ischemia, a marked and selective elevation of end-ischemia Ca2+ in normal female myocytes was completely suppressed in hypertrophic female myocytes - even though all groups demonstrated similar shifts in myocyte contractile performance. After 30 min of simulated reperfusion, the Ca2+ desensitization characterizing the male response was distinctively absent in female cardiomyocytes. Conclusions: Our data demonstrate that cardiac hypertrophy produces dramatically different basal and stress-induced pathophenotypes in female- and male-origin cardiomyocytes. The lower Ca2+ operational status characteristic of female (vs male) cardiomyocytes comprising normal hearts is not exhibited by myocytes of hypertrophic hearts. After ischemia/reperfusion, availability of activator Ca2+ is suppressed in female hypertrophic myocytes, whereas sensitivity to Ca2+ is blunted in male hypertrophic myocytes. These findings demonstrate that selective intervention strategies should be pursued to optimize post-ischemic electromechanical support for male and female hypertrophic hearts.Fil: Bell, James R.. University of Melbourne; AustraliaFil: Curl, Claire L.. University of Melbourne; AustraliaFil: Harding, Tristan W.. University of Melbourne; AustraliaFil: Vila Petroff, Martin Gerarde. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - la Plata. Centro de Investigaciones Cardiovasculares ; ArgentinaFil: Harrap, Stephen B.. University of Melbourne; AustraliaFil: Delbridge, Lea M. D.. University of Melbourne; Australi
Angiotensin II receptor imbalance associated with neonatal cardiac growth restriction is a prelude to adult cardiac hypertrophy
The Hypertrophic Heart Rat (HHR) displays spontaneous cardiomyocyte hypertrophy in association with an apparent reduction in myocyte number in adulthood. This suggests the possibility of reduced hyperplasia or increased apoptosis during early cardiac development. The angiotensin AT1 and AT2 receptor subtypes have been implicated in both cellular growth and apoptosis, but the precise mechanisms are unclear. The aim of this study was to determine the relationship between cardiac AngII receptor expression levels and neonatal cardiomyocyte growth and apoptotic responses in the HHR compared with the Normal Heart Rat (NHR) control strain. Cardiac tissues were freshly harvested from male HHR and NHR at several developmental stages (p2 and 4, 6, 8, 12wks). HHR cardiac weight indices were considerably smaller than NHR at day 2 (4.330.19 vs 5.010.08 mg/g), but ‘caught-up’ to NHR by 4 weeks (5.100.15 vs 5.160.11 mg/g). By 12 weeks, HHR hearts were 27% larger than NHR. Tissue AT1A and AT2 mRNA expression levels were quantified by real-time RT-PCR. Relative to NHR, HHR neonatal hearts exhibited a 4.6-fold higher AT2/AT1 mRNA expression ratio. Cultured neonatal cardiomyocytes were infected with AT1A and/or AT2 receptor-expressing adenoviruses to achieve a physiological level of receptor expression (150 fmol receptor protein/mg total cell protein). In addition, to emulate receptor expression in neonatal HHR hearts, cells were co-infected with AT1A and AT2 receptors at a 4:1 ratio. Apoptosis incidence was studied by morphological analysis after 72 hours exposure to 0.1 M AngII. When infected with the AT1A receptor alone, a higher proportion of HHR myocytes appeared apoptotic than NHR (22.7 4.1% vs 1.1 0.6%, P 0.001). This implies that intrinsic differences predispose HHR cells to accentuated AT1-mediated apoptosis. Interestingly, the bax-1/bcl-2 mRNA expression ratio was significantly higher (50%) in HHR neonatal hearts. When cells were co-infected with AT1A and AT2 receptors, evidence of apoptosis in HHR cells virtually disappeared (0.4 0.1%). These findings suggest a novel capacity of AT2 receptors to counteract accentuated AT1A receptor-induced apoptosis in the HHR in early cardiac growth.<br /
Angiotensin II Type 2 Receptor Antagonizes Angiotensin II Type 1 Receptor-Mediated Cardiomyocyte Autophagy
Autophagy has emerged as an important process in the pathogenesis of cardiovascular diseases, but the proximal triggers for autophagy are unknown. Angiotensin II plays a central role in the pathogenesis of cardiac hypertrophy and heart failure. In this study, we used angiotensin II type 1 (AT1) and type 2 (AT2) receptor–expressing adenoviruses in cultured neonatal cardiomyocytes to provide the first demonstration that neonatal cardiomyocyte autophagic activity is differentially modulated by AT1 and AT2 receptor subtypes. Angiotensin II stimulation (48 hours) of neonatal cardiomyocytes expressing the AT1 receptor alone (Ad-AT1; 10 multiplicities of infection) induced a significant increase in the number of HcRed-LC3 autophagosomes per cell (17.3±1.6 versus 33.3±4.1 autophagosomes per cell;
Elevated dietary sodium intake exacerbates myocardial hypertrophy associated with cardiac-specific overproduction of angiotensin II
Introduction/hypothesisCardiac hypertrophy is an independent risk factor predictive of cardiovascular disease and is significantly associated with morbidity and mortality. The mechanism by which angiotensin II (Ang II) and dietary sodium exert additive effects on the development of cardiac hypertrophy is unclear. The goal of this study was to evaluate the hypothesis that, where there is a genetic predisposition to Ang II-dependent hypertrophy, there is also an increased susceptibility to sodium-induced hypertrophy mediated by AT1-receptor expression.MethodsDiets of low sodium (LS, 0.3% w:w) and high sodium (HS, 4.0% w:w) content were fed to adult (age 25 weeks) control wild-type mice (WT) and to weeks) control wild-type mice (WT) and to transgenic mice exhibiting cardiac specific overexpression of angiotensinogen (TG). At the conclusion of a 40-day dietary treatment period, cardiac tissue weights were compared and the relative expression levels of Ang II receptor subtypes (AT1A and AT2) were evaluated using RT-PCR.ResultsWT and TG mice fed HS and LS diets maintained comparable weight gains during the treatment period. The normalised heart weights of TG mice were elevated compared to WT, and the extent of the increase was greater for mice maintained on the HS diet treatments (WT 12% vs. TG 41% increase in cardiac weight index). While a similar pattern of growth was observed for ventricular tissues, the atrial weight parameters demonstrated an additional significant effect of dietary sodium intake on tissue weight, independent of animal genetic type. No differences in the relative (GAPDH normalised) expression levels of AT1A- and AT2-receptor mRNA were observed between diet or animal genetic groups.ConclusionThis study demonstrates that, where there is a pre-existing genetic condition of Ang II-dependent cardiac hypertrophy, the pro-growth effect of elevated dietary sodium intake is selectively augmented. In TG and WT mice, this effect was evident with a relatively short dietary treatment intervention (40 days). Evaluation of the levels of Ang II receptor mRNA further demonstrated that this differential growth response was not associated with an altered relative expression of either AT1A- or AT2-receptor subtypes. The cellular mechanistic bases for this specific Ang II-dietary sodium interaction remain to be elucidated.<br /