30 research outputs found

    Inhibitor and substrate binding induced stability of HIV-1 protease against sequential dissociation and unfolding revealed by high pressure spectroscopy and kinetics

    Get PDF
    High-pressure methods have become an interesting tool of investigation of structural stability of proteins. They are used to study protein unfolding, but dissociation of oligomeric proteins can be addressed this way, too. HIV-1 protease, although an interesting object of biophysical experiments, has not been studied at high pressure yet. In this study HIV-1 protease is investigated by high pressure (up to 600 MPa) fluorescence spectroscopy of either the inherent tryptophan residues or external 8-anilino-1-naphtalenesulfonic acid at 25°C. A fast concentration-dependent structural transition is detected that corresponds to the dimer-monomer equilibrium. This transition is followed by a slow concentration independent transition that can be assigned to the monomer unfolding. In the presence of a tight-binding inhibitor none of these transitions are observed, which confirms the stabilizing effect of inhibitor. High-pressure enzyme kinetics (up to 350 MPa) also reveals the stabilizing effect of substrate. Unfolding of the protease can thus proceed only from the monomeric state after dimer dissociation and is unfavourable at atmospheric pressure. Dimer-destabilizing effect of high pressure is caused by negative volume change of dimer dissociation of -32.5 mL/mol. It helps us to determine the atmospheric pressure dimerization constant of 0.92 μM. High-pressure methods thus enable the investigation of structural phenomena that are difficult or impossible to measure at atmospheric pressure. © 2015 Ingr et al.INSERM; Grant Agency of the Czech Republic [P208-12-G016

    Effects of isostatic or dynamic high-pressure on the caracterisation of protein-ligand interaction : Application to hydrophobic coumpound embbeding into nanostructures elaborated from milk proteins.

    No full text
    Résumé : L'interaction entre la β-Lactoglobuline (β-Lg) et le rétinol ou entre les micelles de phosphocaséines (PC) et le rétinol à un pH proche de la neutralité, a été étudiée à pression atmosphérique et sous pression isostatique jusqu'à 400 MPa. Les constantes de dissociation et le nombre de sites de liaison ont été calculés indiquant des différences d'affinité en fonction de la structure protéique. A 25°C, des pressions inférieures à 150 MPa favorisent l'association β-Lgrétinol (rapport molaire β-Lg/rétinol : 1/1). A ≥ 150 MPa le complexe se dissocie. A 350 MPa, la β-Lg est dénaturée et le complexe irréversiblement dissocié. Le complexe PCrétinol (rapport molaire PC/rétinol : 1/1) reste au contraire formé après un traitement à 400 MPa et 25°C, bien que la pression induise des phénomènes de dissociation/réassociation des assemblages micellaires à ≥ 100 MPa. L'interaction PCrétinol stabiliserait plutôt les micelles de PC vis-à-vis de la pression, de même qu'une température de pressurisation modérée (35°C) comparativement à une température plus basse (15°C). Un isolat protéique de lactosérum (IPL) en dispersion dans l'eau à 10% (p/p) de protéines (pH 6,5) et en présence d'acétate de rétinol (AcRet) (rapport molaire β-Lg/AcRet : 10/1) a été traité par (i) haute-pression isostatique (HP) (350 MPa, 25°C, 15 min), (ii) traitement thermique de courte durée (TTCD) (75°C, 4 s) ou (iii) homogénéisation à ultra-haute pression (UHPH) (300 MPa, Tin = 24°C). Les trois traitements permettent de former des agrégats de β-Lg capables de retenir l'acétate de rétinol, mais avec une efficacité différente dépendant probablement des mécanismes d'agrégation induit par le chauffage (TTCD), la pression isostatique (HP) ou dynamique (UHPH). Des dispersions à 2,38% (p/p) en phosphocaséines (pH 6,6) en présence d'acétate de rétinol (rapport molaire PC/AcRet : 5/1) ont été traitées par (i) HP (300 MPa, 14°C ou 34°C, 15 min), ou (ii) UHPH (300 MPa, Tin = 14°C). Ces deux traitements favorisent la rétention de l'acétate de rétinol par les micelles de PC pouvant ainsi servir de cargo pour véhiculer des molécules bioactives. Mots clefs : haute pression isostatique, haute pression dynamique, homogénéisation à ultra-haute pression, fluorescence, β-Lactoglobuline, micelles de phosphocaséines, rétinol, acétate de rétinol, agrégats protéiques, interaction protéine-ligand.Abstract: The binding of retinol to native β-Lactoglobulin (β-Lg) or phosphocasein (PC) micelles at pH close to neutral was studied at atmospheric pressure or under isostatic high-pressure. The dissociation constants and number of binding sites were calculated indicating that difference in retinol affinity depended on protein structure. At 25°C, pressure level < 150 MPa promoted β-Lgretinol association (β-Lg/retinol molar ratio: 1/1). At ≥ 150 MPa, the complex dissociated. At 350 MPa, β-Lg was denatured and the complex irreversibly dissociated. PC and retinol (PC/retinol molar ratio: 1/1) remained associated after pressurisation at 400 MPa and 25°C, while pressure induced dissociation/reassociation phenomena of micelle assemblies. The binding of retinol to PC stabilised micelles towards pressure, as well as moderate temperature of pressurisation (35°C) compared to lower temperature (15°C).A whey protein isolate (WPI) dispersed in water at 10% (w/w) proteins (pH 6.5) in the presence of retinyl acetate (RetAc) (β-Lg/RetAc molar ratio: 10/1) was processed by (i) isostatic high-pressure (HP) (350 MPa, 25°C, 15 min), (ii) short-time thermal treatment (STTT) (75°C, 4 s) or (iii) ultra-high pressure homogenisation (UHPH) (300 MPa, Tin = 24°C). All processing produced β-Lg aggregates able to retain RetAc, but with different efficiency depending on aggregation mechanisms induced by heating (STTT), isostatic high-pressure (HP) or dynamic high-pressure (UHPH). Phosphocaseins dispersed at 2.38% (w/w) proteins (pH 6.6) in the presence of RetAc (PC/RetAc molar ratio: 5/1) were processed by (i) HP (300 MPa, 14°C or 34°C, 15 min), or (ii) UHPH (300 MPa, Tin = 14°C). Both treatments promoted RetAc retention by phosphocasein micelles that can be used as cargoes to transport bioactive molecules.Keywords: isostatic high-pressure, dynamic high-pressure, ultra-high pressure homogenisation, fluorescence, β-Lactoglobulin, phosphocasein micelles, retinol, retinyl acetate, protein aggregates, protein-ligand binding.Discipline: Biochimie, Chimie et Technologie des Aliments.Thèse préparée à : Université Montpellier 2 – Equipe de Biochimie et Technologie Alimentaire – UMR IATE 1208 – Pôle EVAP – Place E. Bataillon, 34095 Montpellier, France

    Consistent dating for Antarctic and Greenland ice cores

    No full text
    International audienceWe are hereby presenting a new dating method based on inverse techniques, which aims at calculating consistent gas and ice chronologies for several ice cores. The proposed method yields new dating scenarios simultaneously for several cores by making a compromise between the chronological information brought by glaciological modeling (i.e., ice flow model, firn densification model, accumulation rate model), and by gas and ice stratigraphic constraints. This method enables us to gather widespread chronological information and to use regional or global markers (i.e., methane, volcanic sulfate, Beryllium-10, tephra layers, etc.) to link the core chronologies stratigraphically. Confidence intervals of the new dating scenarios can be calculated thanks to the probabilistic formulation of the new method, which takes into account both modeling and data uncertainties. We apply this method simultaneously to one Greenland (NGRIP) and three Antarctic (EPICA Dome C, EPICA Dronning Maud Land, and Vostok) ices cores, and refine existent chronologies. Our results show that consistent ice and gas chronologies can be derived for depth intervals that are well-constrained by relevant glaciological data. In particular, we propose new and consistent dating of the last deglaciation for Greenland and Antarctic ice and gas records

    Cholinergic system.

    No full text
    <p>Effects of oAβ<sub>25–35</sub> (10 µg/rat) icv injection on VAChT immunolabelling within the nucleus basalis of Meynert (A), mediobasal hypothalamus (B), parietal cortex (C) and hippocampus (D) determined in control untreated rats and 6 weeks after Aβ<sub>25–35</sub> injection. In (B): 3v: third ventricle. In (C): levels I to V cortical layers are indicated. In (D): brackets show the hippocampus granular cell layer. cc: corpus callosum. Scale bars  = 100 µm. Variations in VAChT levels in the hypothalamus (B) and hippocampus (D), determined in rats by western blot 6 weeks after icv injection of scrambled Aβ<sub>25–35</sub> peptide (10 µg/rat; negative control) or oAβ<sub>25–35</sub> (10 µg/rat). VAChT (70 kDa) variations were normalized with β-tubulin (β-tub, 55 kDa) variations and compared with untreated rats (control group: C). The results are expressed as means ± SEM. *p<0.05 and **p<0.01 <i>vs</i>. control group, +p<0.05 and ++p<0.01 <i>vs</i>. scrambled treated rats. The number of animals in each group is indicated within the columns.</p

    Apoptosis.

    No full text
    <p>Variations in pro- and activated caspase-3 levels in the frontal cortex, amygdala, hippocampus and hypothalamus, determined in rats by western blot 6 weeks after oAβ<sub>25–35</sub> icv injection (10 µg/rat). Pro-caspase-3 (35 kDa) and activated caspase-3 (19 kDa) variations were normalized with β-tubulin (β-tub, 55 kDa) variations and compared with untreated rats (control group: C). The results are expressed as means ± SEM. *p<0.05 and **p<0.01 <i>vs</i>. control group, +p<0.05 and ++p<0.01 <i>vs.</i> scrambled treated rats. Note that scrambled peptide injection (10 µg/rat) served as negative control and did not induce any modifications in pro- and activated caspase-3 levels. The number of animals in each group is indicated within the columns.</p

    Neurotrophic factor.

    No full text
    <p>Variations in BDNF contents within the frontal cortex, amygdala, hippocampus and hypothalamus, determined in rats 6 weeks after icv injection of scrambled Aβ<sub>25–35</sub> peptide (10 µg/rat; negative control) or oAβ<sub>25–35</sub> (10 µg/rat). The results are expressed as means ± SEM. **p<0.01 <i>vs</i>. control un-injected rats (control group: C), +p<0.05 and ++p<0.01 <i>vs.</i> scrambled treated rats. The number of animals in each group is indicated within the columns.</p

    Oxidative stress.

    No full text
    <p>Variations in lipid peroxidation levels in the frontal cortex, amygdala, hippocampus and hypothalamus, determined in rats 6 weeks after icv injection of scrambled Aβ<sub>25–35</sub> peptide (10 µg/rat; negative control) or oAβ<sub>25–35</sub> (10 µg/rat). The results are expressed as means ± SEM. **p<0.01 <i>vs</i>. control un-injected rats (control group: C), +p<0.05 and ++p<0.01 <i>vs.</i> scrambled treated rats. The number of animals in each group is indicated within the columns.</p
    corecore