72 research outputs found

    Magnetism of nakhlites and chassignites

    Get PDF
    Hysteresis measurements on three shergottite and two nakhlite meteorites indicate single domain grain size behavior for the highly shocked Shergotty, Zagami, and EETA 79001 meteorites, with more multidomain-like behavior for the unshocked Nakhla and Governador Valadares meteorites. High viscosity and initial susceptibility for Antarctic shergottite ALHA 7705 indicate the presence of superparamagnetic grains in this specimen. Thermomagnetic analysis indicate Shergotty and Zagami as the least initially oxidized, while EETA 79001 appears to be the most oxidized. Cooling of the meteorite samples from high temperature in air results in a substantial increase in magnetization due to the production of magnetite through oxidation exsolution of titanomagnetite. However, vacuum heating substantially suppresses this process, and in the case of EETA 79001 and Nakhla, results in a rehomogenization of the titanomagnetite grains. Remanence measurements on several subsamples of Shergotty and Zagami meteorites reveal a large variation in intensity that does not seem related to the abundance of remanence carriers. The other meteorites carry only weak remanence, suggesting weak magnetizing fields as the source of their magnetic signal. The meteorites' weak field environment is consistent with Martian or asteroidal body origin but inconsistent with terrestrial origin

    Colloquium: geometric phases of light: insights from fiber bundle theory

    Get PDF
    Geometric phases are ubiquitous in physics; they act as memories of the transformation of a physical system. In optics, the most prominent examples are the Pancharatnam-Berry phase and the spin-redirection phase. Recent technological advances in phase and polarization structuring have led to the discovery of additional geometric phases of light. The underlying mechanism for all of these is provided by fiber bundle theory. This Colloquium reviews how fiber bundle theory not only sheds light on the origin of geometric phases of light but also lays the foundations for the exploration of high-dimensional state spaces, with implications for topological photonics and quantum communications

    Late Cenozoic Structure and Tectonics of the Northern Mojave Desert

    Get PDF
    In the Fort Irwin region of the northern Mojave desert, late Cenozoic east striking sinistral faults predominate over northwest striking dextral faults of the same age. Kinematic indicators and offset marker units indicate dominantly sinistral strike slip on the east striking portions of the faults and sinistral-thrust slip on northwest striking, moderately dipping segments at the east ends of the blocks. Crustal blocks ∌7–10 km wide by ∌50 km long are bounded by complex fault zones up to 2 km wide at the edges and ends of each block. Faulting initiated after ∌11 Ma, and Quaternary deposits are faulted and folded. We document a minimum of 13 km cumulative sinistral offset in a north-south transect from south of the Bicycle Lake fault to north of the Drinkwater Lake fault. Paleomagnetic results from 50 sites reveal two direction groups in early and middle Miocene rocks. The north-to-northwest declinations of the first group are close to the middle Miocene reference pole. However, rock magnetic studies suggest that both primary and remagnetized directions are present in this group. The northeast declinations of the second group are interpreted as primary and 63.5° ± 7.6° clockwise from the reference pole and suggest net post middle Miocene clockwise rotation of several of the east trending blocks in the northeast Mojave domain. The Jurassic Independence Dike Swarm in Fort Irwin may be rotated 25–80° clockwise relative to the swarm north of the Garlock fault, thus supporting the inference of clockwise rotation. Using a simple-shear model that combines sinistral slip and clockwise rotation of elongate crustal blocks, we predict ∌23° clockwise rotation using the observed fault slip, or one-third that inferred from the paleomagnetic results. The discrepancy between slip and rotation may reflect clockwise bending at the ends of fault blocks, where most of our paleomagnetic sites are located. However, at least 25°–40° of clockwise tectonic rotation is consistent with the observed slip on faults within the domain plus possible “rigid-body” rotation of the region evidenced by clockwise bending of northwest striking domain-bounding faults. Our estimates of sinistral shear and clockwise rotation suggest that approximately half of the 65 km of dextral shear in the Eastern California Shear Zone over the last 10 m.y. occurred within the northeast Mojave Domain. The remainder must be accommodated in adjacent structural domains, e.g., east of the Avawatz Mountains and west of the Goldstone Lake fault. Supporting Appendices 1 and 2 are available on diskette or via Anonymous FTP from kosmos.agu.org, directory APEND (Username -- anonymous, Password = guest). Diskette may be ordered from American Geophysical Union, 2000 Florida Avenue, N.W, Washington, DC 20009 or by phone at 800-966-2481; $15.00. Payment must accompany order

    Topological approach of characterizing optical Skyrmions and Skyrmion lattices

    Full text link
    The Skyrmion number of paraxial optical Skyrmions can be defined solely via their polarization singularities and associated winding numbers, using a mathematical derivation that exploits Stokes's theorem. It is demonstrated that this definition provides a robust way to extract the Skyrmion number from experimental data, as illustrated for a variety of optical (N\'eel-type) Skyrmions and bimerons, and their corresponding lattices. This method generates not only an increase in accuracy, but also provides an intuitive geometrical approach to understanding the topology of such quasi-particles of light, and their robustness against smooth transformations

    Low molecular weight heparin in surgical valve procedures: When and how much for an optimal prophylaxis?

    Get PDF
    Background: Periprocedural antithrombotic prophylaxis in patients undergoing surgical valve procedures (SVP) is insufficiently investigated. Low molecular weight heparin (LMWH) has been considered as an alternative to unfractionated heparin (UFH). However, safety and efficacy of this prophylaxis strategy is unknown. This study aimed to investigate safety and efficacy of periprocedural LMWH prophylaxis and determine optimal dosage and timing for periprocedural cessation and initiation.Methods: The present study is a retrospective, single-center observational analysis of 388 patients who underwent SVP (valve replacement or valvuloplasty) between 2015 and 2016. In-hospital endpoints were bleeding, transfusions, reoperation due to bleeding, and thromboembolic events. Results: Giving the first dose of LMWH on the day of SVP was a risk factor for bleeding (OR 1.07; 95% CI 1.04–1.10; p < 0.001), transfusions (OR 1.04; 95% CI 1.01–1.07; p = 0.008) and reoperation due to bleeding (OR 1.20; 95% CI 1.12–1.28; p < 0.001), with > 40 mg/day as a predictor. A higher dosage of LMWH premedication was an independent risk factor for bleeding (OR 1.02; 95% CI 1.00–1.04; p = 0.03) and transfusion (OR 1.03; 95% CI 1.01–1.05; p = 0.01), with > 60 mg/day as a predictor for these events. LMWH dosed within 24 h prior to SVP increased the risk of transfusion (AUC 0.636; 95% CI 0.496–0.762; p = 0.04).Conclusions: Bleeding is an important early concern after surgical valve procedures. Safety and efficacy of periprocedural prophylaxis with LMWH depends on dosage and the timing of its administration. The most optimal periprocedural prophylaxis in the SVP population appears to be LMWH in dosage of 40–60 mg/day, which is recommended for deep vein thrombosis prophylaxis, ceased at least one day before SV

    In situ multi-frequency measurements of magnetic susceptibility as an indicator of planetary regolith maturity

    Get PDF
    Space weathering is now generally accepted to modify the optical and magnetic properties of airless planetary regoliths such as those on the Moon and Mercury. Under micrometeorite and ion bombardment, ferrous iron in such surfaces is reduced to metallic iron spheres, found in amorphous coatings on almost all exposed regolith grains. The size and number distribution of these particles and their location in the regolith all determine the nature and extent of the optical and magnetic changes. These parameters in turn reflect the formation mechanisms, temperatures, and durations involved in the evolution of the regolith. Studying them in situ is of intrinsic value to understanding the weathering process, and useful for determining the maturity of the regolith and providing supporting data for interpreting remotely sensed mineralogy. Fine-grained metallic iron has a number of properties that make it amenable to magnetic techniques, of which magnetic susceptibility is the simplest and most robust. The magnetic properties of the lunar regolith and laboratory regolith analogues are therefore reviewed and the theoretical basis for the frequency dependence of magnetic susceptibility presented. Proposed here is then an instrument concept using multi-frequency measurements of magnetic susceptibility to confirm the presence of fine grained magnetic material and attempt to infer its quantity and size distribution. Such an instrument would be invaluable on a future mission to an asteroid, the Moon, Mercury or other airless rocky Solar System body

    Abrupt global events in the Earth's history: a physics perspective

    Full text link
    The timeline of the Earth's history reveals quasi-periodicity of the geological record over the last 542 Myr, on timescales close, in the order of magnitude, to 1 Myr. What is the origin of this quasi-periodicity? What is the nature of the global events that define the boundaries of the geological time scale? I propose that a single mechanism is responsible for all three types of such events: mass extinctions, geomagnetic polarity reversals, and sea-level fluctuations. The mechanism is fast, and involves a significant energy release. The mechanism is unlikely to have astronomical causes, both because of the energies involved, and because it acts quasi-periodically. It must then be sought within the Earth itself. And it must be capable of reversing the Earth's magnetic field. The last requirement makes it incompatible with the consensus model of the origin of the geomagnetic field - the hydromagnetic dynamo operating in the Earth's fluid core. In the second part of the paper, I show that a vast amount of seemingly unconnected geophysical and geological data can be understood in a unified way if the source of the Earth's main magnetic field is a ~200-km-thick lithosphere, repeatedly magnetized as a result of methane-driven oceanic eruptions, which produce ocean flow capable of dynamo action. The eruptions are driven by the interplay of buoyancy forces and exsolution of dissolved gas, which accumulates in the oceanic water masses prone to stagnation and anoxia. Polarity reversals, mass extinctions, and sequence boundaries are consequences of these eruptions. Unlike the consensus model of geomagnetism, this scenario is consistent with the paleomagnetic data showing that "directional changes during a [geomagnetic polarity] reversal can be astonishingly fast, possibly occurring as a nearly instantaneous jump from one inclined dipolar state to another in the opposite hemisphere".Comment: Final journal version. New title, significant changes. Supersedes v.

    Long-lived magnetism on chondrite parent bodies

    Get PDF
    publisher: Elsevier articletitle: Long-lived magnetism on chondrite parent bodies journaltitle: Earth and Planetary Science Letters articlelink: http://dx.doi.org/10.1016/j.epsl.2017.07.035 content_type: article copyright: © 2017 The Authors. Published by Elsevier B.V.© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). The attached file is the published version of the article

    Heme Oxygenase-1 Accelerates Cutaneous Wound Healing in Mice

    Get PDF
    Heme oxygenase-1 (HO-1), a cytoprotective, pro-angiogenic and anti-inflammatory enzyme, is strongly induced in injured tissues. Our aim was to clarify its role in cutaneous wound healing. In wild type mice, maximal expression of HO-1 in the skin was observed on the 2nd and 3rd days after wounding. Inhibition of HO-1 by tin protoporphyrin-IX resulted in retardation of wound closure. Healing was also delayed in HO-1 deficient mice, where lack of HO-1 could lead to complete suppression of reepithelialization and to formation of extensive skin lesions, accompanied by impaired neovascularization. Experiments performed in transgenic mice bearing HO-1 under control of keratin 14 promoter showed that increased level of HO-1 in keratinocytes is enough to improve the neovascularization and hasten the closure of wounds. Importantly, induction of HO-1 in wounded skin was relatively weak and delayed in diabetic (db/db) mice, in which also angiogenesis and wound closure were impaired. In such animals local delivery of HO-1 transgene using adenoviral vectors accelerated the wound healing and increased the vascularization. In summary, induction of HO-1 is necessary for efficient wound closure and neovascularization. Impaired wound healing in diabetic mice may be associated with delayed HO-1 upregulation and can be improved by HO-1 gene transfer
    • 

    corecore