109 research outputs found

    Cortical Networks for Control of Voluntary Arm Movements Under Variable Force Conditions

    Full text link
    A neural model of voluntary movement and proprioception functionally interprets and simulates cell types in movement related areas of primate cortex. The model circuit maintains accurate proprioception while controlling voluntary reaches to spatial targets, exertion of force against obstacles, posture maintenance despite perturbations, compliance with an imposed movement, and static and inertial load compensations. Computer simulations show that model cell properties mimic cell properties in areas 4 and 5. These include delay period activation, response profiles during movement, kinematic and kinetic sensitivities, and latency of activity onset. Model area 4 phasic and tonic cells compute velocity and position commands which activate alpha and gamma motor neurons, thereby shifting the mechanical equilibrium point. Anterior area 5 cells compute limb position using corollary discharges from area 4 and muscle spindle feedback. Posterior area 5 cells use the perceived position and target position signals to compute a desired movement vector. The cortical loop is closed by a volition-gated projection of this movement vector to area 4 phasic cells. Phasic-tonic cells in area 4 incorporate force command components to compensate for static and inertial loads. Predictions are made for both motor and parietal cell types under novel experimental protocols.Office of Naval Research (N00014-92-J-1309, N00014-93-1-1364, N00014-95-l-0409, N00014-92-J-4015); National Science Foundation (IRI-90-24877, IRI-90-00530

    A Neural Model of Biased Oscillations in Aplysia Head-Waving Behavior

    Full text link
    A long-term bias in the exploratory head-waving behavior of Aplysia can be induced using bright lights as an aversive stimulus: coupling onset of the lights with head movements to one side results in a bias away from that side (Cook & Carew, 1986). This bias has been interpreted as a form of operant conditioning, and has previously been simulated with a neural network model based on associative synaptic facilitation (Raymond, Baxter, Buonomano, & Byrne, 1992). In this article we simulate the head-waving behavior using a recurrent gated dipole, a nonlinear dynamical neural model that has previously been used to explain various data including oscillatory behavior in biological pacemakers. Within the recurrent gated dipole, two channels operate antagonistically to generate oscillations, which drive the side-to-side head waving. The frequency of oscillations depends on transmitter mobilization dynamics, which exhibit both short- and long-term adaptation. We assume that light onset results in a nonspecific increase in arousal to both channels of the dipole. Repeated pairing of arousal increments with activation of one channel (the "reinforced" channel) of the dipole leads to a bias in transmitter dynamics, which causes the oscillation to last a shorter time on the reinforced channel than on the non-reinforced channel. Our model provides a parsimonious explanation of the observed behavior, and it avoids some of the unexpected results obtained with the Raymond et al. model. In addition, our model makes predictions concerning the rate of onset and extinction of the biases, and it suggests new lines of experimentation to test the nature of the head-waving behavior.Office of Naval Research (N00014-92-J-4015, N00014-91-J-4100, N0014-92-J-1309); Air Force Office of Scientific Research (F49620-92-J-0499); A.P. Sloan Foundation (BR-3122

    Making Choices between Rules or between Actions

    Get PDF
    A new study by Klaes et al. in this issue of Neuron shows that the brain can simultaneously apply two rules to the same sensory information in order to specify two parallel potential action goals, which then compete for execution in the sensorimotor system

    Dorsal premotor cortex is involved in switching motor plans

    Get PDF
    Previous studies have shown that neural activity in primate dorsal premotor cortex (PMd) can simultaneously represent multiple potential movement plans, and that activity related to these movement options is modulated by their relative subjective desirability. These findings support the hypothesis that decisions about actions are made through a competition within the same circuits that guide the actions themselves. This hypothesis further predicts that the very same cells that guide initial decisions will continue to update their activities if an animal changes its mind. For example, if a previously selected movement option suddenly becomes unavailable, the correction will be performed by the same cells that selected the initial movement, as opposed to some different group of cells responsible for online guidance. We tested this prediction by recording neural activity in the PMd of a monkey performing an instructed-delay reach selection task. In the task, two targets were simultaneously presented and their border styles indicated whether each would be worth 1, 2, or 3 juice drops. In a random subset of trials (FREE), the monkey was allowed a choice while in the remaining trials (FORCED) one of the targets disappeared at the time of the GO signal. In FORCED-LOW trials the monkey was forced to move to the less valuable target and started moving either toward the new target (Direct) or toward the target that vanished and then curved to reach the remaining one (Curved). Prior to the GO signal, PMd activity clearly reflected the monkey's subjective preference, predicting his choices in FREE trials even with equally valued options. In FORCED-LOW trials, PMd activity reflected the switch of the monkey's plan as early as 100 ms after the GO signal, well before movement onset (MO). This confirms that the activity is not related to feedback from the movement itself, and suggests that PMd continues to participate in action selection even when the animal changes its mind on-line. These findings were reproduced by a computational model suggesting that switches between action plans can be explained by the same competition process responsible for initial decisions

    Venous outflow of the leg: Anatomy and physiologic mechanism of the plantar venous plexus

    Get PDF
    AbstractPurpose: Mechanisms of venous outflow from the leg and foot have not been clearly defined. The purpose of this study was to evaluate the anatomy and physiologic mechanism of the plantar venous plexus and its impact on venous drainage from the tibial veins.Methods: Fifty phlebograms that contained complete foot and calf films were reviewed. On lateral films, the number of veins in the plantar venous plexus and its tibial outflow tract were counted. The length and diameter of the longest vein in the plantar venous system and the length of the foot arch were measured. The ratio of the length of the plantar venous plexus to the arch length was calculated. The presence or absence of valves within the plexus was recorded. Plantar venous plexus outflow was evaluated by an duplex ultrasonographic scan of the posterior tibial, anterior tibial, and peroneal veins during intermittent external pneumatic compression of the plantar surface of the foot.Results: The plantar venous plexus was composed of one to four large veins (mean, 2.7 veins) within the plantar aspect of the foot. The diameter of these veins was 4.0 ± 1.2 mm. The veins coursed diagonally from a lateral position in the forefoot to a medial position at the level of the ankle, spanning 75% of the foot arch. Prominent valves were recognized within the plantar veins in 22 of 50 patients. The plexus coalesced into an outflow tract of one to four veins (mean, 2.5 veins) that flowed exclusively into the posterior tibial venous system. Small accessory veins that drained the plantar surface of the forefoot flowed into either the posterior tibial or peroneal veins. This pattern of selective drainage of the plantar venous plexus was confirmed by duplex imaging. Mechanical compression of the plantar venous plexus produced a mean peak velocity in the posterior tibial veins of 123 ± 71 cm/sec, in the anterior tibial veins of 24 ± 14 cm/sec, and in the peroneal veins of 29 ± 26 cm/sec.Conclusions: The plantar venous plexus is composed of multiple large-diameter veins that span the arch of the foot. Compression of the plantar venous plexus, such as that which occurs during ambulation, is capable of significantly increasing flow through the posterior tibial venous system into the popliteal vein. Its function may be integral to venous outflow from the calf and priming of the more proximal calf muscle pump. (J Vasc Surg 1996;24:819-24.

    The oral microbiota in colorectal cancer is distinctive and predictive

    Get PDF
    Background and aims: Microbiota alterations are linked with colorectal cancer (CRC) and notably higher abundance of putative oral bacteria on colonic tumours. However, it is not known if colonic mucosa-associated taxa are indeed orally derived, if such cases are a distinct subset of patients or if the oral microbiome is generally suitable for screening for CRC. Methods: We profiled the microbiota in oral swabs, colonic mucosae and stool from individuals with CRC (99 subjects), colorectal polyps (32) or controls (103). Results: Several oral taxa were differentially abundant in CRC compared with controls, for example, Streptococcus and Prevotellas pp. A classification model of oral swab microbiota distinguished individuals with CRC or polyps from controls (sensitivity: 53% (CRC)/67% (polyps); specificity: 96%). Combining the data from faecal microbiota and oral swab microbiota increased the sensitivity of this model to 76% (CRC)/88% (polyps). We detected similar bacterial networks in colonic microbiota and oral microbiota datasets comprising putative oral biofilm forming bacteria. While these taxa were more abundant in CRC, core networks between pathogenic, CRC-associated oral bacteria such as Peptostreptococcus, Parvimonas and Fusobacterium were also detected in healthy controls. High abundance of Lachnospiraceae was negatively associated with the colonisation of colonic tissue with oral-like bacterial networks suggesting a protective role for certain microbiota types against CRC, possibly by conferring colonisation resistance to CRC-associated oral taxa and possibly mediated through habitual diet. Conclusion: The heterogeneity of CRC may relate to microbiota types that either predispose or provide resistance to the disease, and profiling the oral microbiome may offer an alternative screen for detecting CRC

    fMRI Supports the Sensorimotor Theory of Motor Resonance

    Get PDF
    The neural mechanisms mediating the activation of the motor system during action observation, also known as motor resonance, are of major interest to the field of motor control. It has been proposed that motor resonance develops in infants through Hebbian plasticity of pathways connecting sensory and motor regions that fire simultaneously during imitation or self movement observation. A fundamental problem when testing this theory in adults is that most experimental paradigms involve actions that have been overpracticed throughout life. Here, we directly tested the sensorimotor theory of motor resonance by creating new visuomotor representations using abstract stimuli (motor symbols) and identifying the neural networks recruited through fMRI. We predicted that the network recruited during action observation and execution would overlap with that recruited during observation of new motor symbols. Our results indicate that a network consisting of premotor and posterior parietal cortex, the supplementary motor area, the inferior frontal gyrus and cerebellum was activated both by new motor symbols and by direct observation of the corresponding action. This tight spatial overlap underscores the importance of sensorimotor learning for motor resonance and further indicates that the physical characteristics of the perceived stimulus are irrelevant to the evoked response in the observer

    Motor imagery during action observation: A brief review of evidence, theory and future research opportunities

    Get PDF
    Motor imagery (MI) and action observation (AO) have traditionally been viewed as two separate techniques, which can both be used alongside physical practice to enhance motor learning and rehabilitation. Their independent use has been shown to be effective, and there is clear evidence that the two processes can elicit similar activity in the motor system. Building on these well-established findings, research has now turned to investigate the effects of their combined use. In this article, we first review the available neurophysiological and behavioral evidence for the effects of combined action observation and motor imagery (‘AO+MI’) on motor processes. We next describe a conceptual framework for their combined use, and then discuss several areas for future research into AO+MI processes. In this review, we advocate a more integrated approach to AO+MI techniques than has previously been adopted by movement scientists and practitioners alike. We hope this early review of an emergent body of research, along with a related set of research questions, can inspire new work in this area. We are optimistic that future research will further confirm if, how, and when this combined approach to AO+MI can be more effective in motor learning and rehabilitation settings, relative to the more traditional application of AO or MI independently

    Consensus Paper: Towards a Systems-Level View of Cerebellar Function: the Interplay Between Cerebellum, Basal Ganglia, and Cortex

    Get PDF
    corecore