9 research outputs found

    Detection of Fire Smoke Plumes Based on Aerosol Scattering Using VIIRS Data over Global Fire-Prone Regions

    No full text
    Smoke from fires significantly influences climate, weather, and human health. Fire smoke is traditionally detected using an aerosol index calculated from spectral contrast changes. However, such methods usually miss thin smoke plumes. It also remains challenging to accurately separate smoke plumes from dust, clouds, and bright surfaces. To improve smoke plume detections, this paper presents a new scattering-based smoke detection algorithm (SSDA) depending mainly on visible and infrared imaging radiometer suite (VIIRS) blue and green bands. The SSDA is established based on the theory of Mie scattering that occurs when the diameter of an atmospheric particulate is similar to the wavelength of the scattered light. Thus, smoke commonly causes Mie scattering in VIIRS blue and green bands because of the close correspondence between smoke particulate diameters and the blue/green band wavelengths. For developing the SSDA, training samples were selected from global fire-prone regions in North America, South America, Africa, Indonesia, Siberia, and Australia. The SSDA performance was evaluated against the VIIRS aerosol detection product and smoke detections from the ultraviolet aerosol index using manually labeled fire smoke plumes as a benchmark. Results show that the SSDA smoke detections are superior to existing products due chiefly to the improved ability of the algorithm to detect thin smoke and separate fire smoke from other surface types. Moreover, the SSDA smoke distribution pattern exhibits a high spatial correlation with the global fire density map, suggesting that SSDA is capable of detecting smoke plumes of fires in near real-time across the globe

    Global Surface HCHO Distribution Derived from Satellite Observations with Neural Networks Technique

    No full text
    Formaldehyde (HCHO) is one of the most important carcinogenic air contaminants in outdoor air. However, the lack of monitoring of the global surface concentration of HCHO is currently hindering research on outdoor HCHO pollution. Traditional methods are either restricted to small areas or, for research on a global scale, too data-demanding. To alleviate this issue, we adopted neural networks to estimate the 2019 global surface HCHO concentration with confidence intervals, utilizing HCHO vertical column density data from TROPOMI, and in-situ data from HAPs (harmful air pollutants) monitoring networks and the ATom mission. Our results show that the global surface HCHO average concentration is 2.30 μg/m3. Furthermore, in terms of regions, the concentrations in the Amazon Basin, Northern China, South-east Asia, the Bay of Bengal, and Central and Western Africa are among the highest. The results from our study provide the first dataset on global surface HCHO concentration. In addition, the derived confidence intervals of surface HCHO concentration add an extra layer of confidence to our results. As a pioneering work in adopting confidence interval estimation to AI-driven atmospheric pollutant research and the first global HCHO surface distribution dataset, our paper paves the way for rigorous study of global ambient HCHO health risk and economic loss, thus providing a basis for pollution control policies worldwide

    Complete mitochondrial genomes reveal the phylogenetic relationships of Duoma with eight representative sheep breeds and two ovis species

    No full text
    The Ovis aries Duoma breed is one of the most important alpine grassland-type sheep breeds in China. In this current study, we first reported the complete mitochondrial genome of Duoma sheep. Mitochondrial genome is 16,618 bp in length and exhibits the same typical structure as the other published sheep breeds. The genome contains 37 genes (22 tRNA, two rRNA, and 13 protein-coding genes (PCGs)) and a control region (D-loop region). Phylogenetic analysis shows that the Duoma sheep breed is closer to Ganjia sheep. Our findings will help the further evolution and conservation studies of Duoma sheep

    Machine Learning Based Algorithms for Global Dust Aerosol Detection from Satellite Images: Inter-Comparisons and Evaluation

    No full text
    Identifying dust aerosols from passive satellite images is of great interest for many applications. In this study, we developed five different machine-learning (ML) based algorithms, including Logistic Regression, K Nearest Neighbor, Random Forest (RF), Feed Forward Neural Network (FFNN), and Convolutional Neural Network (CNN), to identify dust aerosols in the daytime satellite images from the Visible Infrared Imaging Radiometer Suite (VIIRS) under cloud-free conditions on a global scale. In order to train the ML algorithms, we collocated the state-of-the-art dust detection product from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) with the VIIRS observations along the CALIOP track. The 16 VIIRS M-band observations with the center wavelength ranging from deep blue to thermal infrared, together with solar-viewing geometries and pixel time and locations, are used as the predictor variables. Four different sets of training input data are constructed based on different combinations of VIIRS pixel and predictor variables. The validation and comparison results based on the collocated CALIOP data indicate that the FFNN method based on all available predictor variables is the best performing one among all methods. It has an averaged dust detection accuracy of about 81%, 89%, and 85% over land, ocean and whole globe, respectively, compared with collocated CALIOP. When applied to off-track VIIRS pixels, the FFNN method retrieves geographical distributions of dust that are in good agreement with on-track results as well as CALIOP statistics. For further evaluation, we compared our results based on the ML algorithms to NOAA’s Aerosol Detection Product (ADP), which is a product that classifies dust, smoke, and ash using physical-based methods. The comparison reveals both similarity and differences. Overall, this study demonstrates the great potential of ML methods for dust detection and proves that these methods can be trained on the CALIOP track and then applied to the whole granule of VIIRS granule

    Machine Learning Based Algorithms for Global Dust Aerosol Detection from Satellite Images: Inter-Comparisons and Evaluation

    No full text
    Identifying dust aerosols from passive satellite images is of great interest for many applications. In this study, we developed five different machine-learning (ML) based algorithms, including Logistic Regression, K Nearest Neighbor, Random Forest (RF), Feed Forward Neural Network (FFNN), and Convolutional Neural Network (CNN), to identify dust aerosols in the daytime satellite images from the Visible Infrared Imaging Radiometer Suite (VIIRS) under cloud-free conditions on a global scale. In order to train the ML algorithms, we collocated the state-of-the-art dust detection product from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) with the VIIRS observations along the CALIOP track. The 16 VIIRS M-band observations with the center wavelength ranging from deep blue to thermal infrared, together with solar-viewing geometries and pixel time and locations, are used as the predictor variables. Four different sets of training input data are constructed based on different combinations of VIIRS pixel and predictor variables. The validation and comparison results based on the collocated CALIOP data indicate that the FFNN method based on all available predictor variables is the best performing one among all methods. It has an averaged dust detection accuracy of about 81%, 89%, and 85% over land, ocean and whole globe, respectively, compared with collocated CALIOP. When applied to off-track VIIRS pixels, the FFNN method retrieves geographical distributions of dust that are in good agreement with on-track results as well as CALIOP statistics. For further evaluation, we compared our results based on the ML algorithms to NOAA’s Aerosol Detection Product (ADP), which is a product that classifies dust, smoke, and ash using physical-based methods. The comparison reveals both similarity and differences. Overall, this study demonstrates the great potential of ML methods for dust detection and proves that these methods can be trained on the CALIOP track and then applied to the whole granule of VIIRS granule

    Geographic population genetic structure and diversity of Sophora moorcroftiana based on genotyping-by-sequencing (GBS)

    No full text
    Sophora moorcroftiana is a perennial leguminous low shrub endemic to the Yarlung Zangbo River basin in Tibet with irreplaceable economic and ecological value. To determine the drivers of evolution in this species, 225 individuals belonging to 15 populations from different geographic locations were sampled, and population genetics was studied using high-throughput genotyping-by-sequencing (GBS). Based on genetic diversity analysis, phylogenetic analysis, principal component analysis, and structure analysis, 15 natural populations were clustered into the following five subgroups: subgroup I (Shigatse subgroup) was located in the upper reaches of the Yarlung Zangbo River with a relatively high level of population genetic variation (means for PIC, Shannon and PI were 0.173, 0.326 and 0.0000305, respectively), and gene flow within the subgroup was also high (mean value for Nm was 4.67). Subgroup II (including Pop 7 and Pop 8; means for PIC, Shannon and PI were 0.182, 0.345 and 0.0000321, respectively), located in the middle reaches of the Yarlung Zangbo River had relatively high levels of gene flow with the populations distributed in the upper and lower reaches. The Nm between subgroup II with subgroups I and III was 3.271 and 2.894, respectively. Considering all the genetic diversity indices Pop 8 had relatively high genetic diversity. Subgroup III (the remaining mixed subgroup of Lhasa and Shannan) was located in the middle reaches of the Yarlung Zangbo River and the means for PIC, Shannon and PI were 0.172, 0.324 and 0.0000303, respectively. Subgroup IV (Nyingchi subgroup), located in the lower reaches of the Yarlung Zangbo River basin, showed a further genetic distance from the other subgroups and the means for PIC, Shannon and PI were 0.147, 0.277 and 0.0000263, respectively. Subgroup V (Nyingchi Gongbu Jiangda subgroup), located in the upper reaches of the Niyang River, had the lowest level of genetic variation (means for PIC, Shannon and PI were 0.106, 0.198 and 0.0000187, respectively) and gene flow with other populations (mean value for Nm was 0.42). According to the comprehensive analysis, the S. moorcroftiana populations generally expanded from upstream to downstream and displayed a high level of genetic differentiation in the populations in the upper and lower reaches. There were high levels of gene exchange between the central populations with upstream and downstream populations, and wind-induced seed dispersal was an important factor in the formation of this gene exchange mode

    Complete mitochondrial genomes reveal the phylogenetic relationships of Duoma with eight representative sheep breeds and two ovis species

    No full text
    The Ovis aries Duoma breed is one of the most important alpine grassland-type sheep breeds in China. In this current study, we first reported the complete mitochondrial genome of Duoma sheep. Mitochondrial genome is 16,618 bp in length and exhibits the same typical structure as the other published sheep breeds. The genome contains 37 genes (22 tRNA, two rRNA, and 13 protein-coding genes (PCGs)) and a control region (D-loop region). Phylogenetic analysis shows that the Duoma sheep breed is closer to Ganjia sheep. Our findings will help the further evolution and conservation studies of Duoma sheep.</p
    corecore