52 research outputs found

    Advancement of benthic indicators and biomarker-based tools for biomonitoring and risk assessment in the Barents Sea region

    Get PDF
    Expanding oil and gas (O&G) and shipping activities in the absence of sufficient baseline data on the sensitivity of Arctic marine biota to oil related compounds makes environmental risk assessment for the Arctic challenging. Delayed oil weathering and biodegradation, ecological seasonal variations or a delayed manifestation of toxicity in Arctic marine biota could create differences between the susceptibilities of Arctic and temperate monitoring species in the long term. Such differences may be better defined in estuarine or shallow areas, where the frequent resuspension of sediment and strong affinity of oil for sediment organic matter suggest that a large proportion of oil compounds will be transferred to the seafloor, increasing exposure of benthic organisms. Arctic benthos, and in particular sediment-dwelling organisms, can be applied as relevant and sensitive bioindicators of chemical stress and are important food sources for higher trophic levels. Their intrinsic ecological value calls for the evaluation and validation of oil toxicokinetic parameters in Arctic benthos as part of current oil risk assessment procedures and monitoring programmes. Such knowledge may form an important basis for the selection of relevant Arctic benthic bioindicators of long-term environmental impacts of O&G and shipping activities. The aim of this thesis is to develop a suite of candidate exposure methods, including bioaccumulation and biochemical markers, for the identification of bioindicators of chemical stress derived from O&G and shipping in Arctic coastal benthic systems. The second aim is to propose, based on experiments with temperate species, the avoidance of oil contaminated sediment by Arctic benthic amphipods as an oil risk assessment tool for the Arctic. This work contributes to the development of Arctic benthic bioindicators of the cumulative effects of O&G and shipping activities through the identification of robust PAH exposure metrics in representative benthic species of the Barents Sea region.</p

    Discovery of extremely halophilic, methyl-reducing euryarchaea provides insights into the evolutionary origin of methanogenesis

    Get PDF
    Methanogenic archaea are major players in the global carbon cycle and in the biotechnology of anaerobic digestion. The phylum Euryarchaeota includes diverse groups of methanogens that are interspersed with non-methanogenic lineages. So far, methanogens inhabiting hypersaline environments have been identified only within the order Methanosarcinales. We report the discovery of a deep phylogenetic lineage of extremophilic methanogens in hypersaline lakes and present analysis of two nearly complete genomes from this group. Within the phylum Euryarchaeota, these isolates form a separate, class-level lineage 'Methanonatronarchaeia' that is most closely related to the class Halobacteria. Similar to the Halobacteria, 'Methanonatronarchaeia' are extremely halophilic and do not accumulate organic osmoprotectants. The high intracellular concentration of potassium implies that 'Methanonatronarchaeia' employ the 'salt-in' osmoprotection strategy. These methanogens are heterotrophic methyl-reducers that use C 1 -methylated compounds as electron acceptors and formate or hydrogen as electron donors. The genomes contain an incomplete and apparently inactivated set of genes encoding the upper branch of methyl group oxidation to CO2 as well as membrane-bound heterodisulfide reductase and cytochromes. These features differentiate 'Methanonatronarchaeia' from all known methyl-reducing methanogens. The discovery of extremely halophilic, methyl-reducing methanogens related to haloarchaea provides insights into the origin of methanogenesis and shows that the strategies employed by methanogens to thrive in salt-saturating conditions are not limited to the classical methylotrophic pathway.Accepted Author ManuscriptBT/Environmental Biotechnolog

    ICAM-1 nanoclusters regulate hepatic epithelial cell polarity by leukocyte adhesion-independent control of apical actomyosin

    Get PDF
    Epithelial intercellular adhesion molecule (ICAM)-1 is apically polarized, interacts with, and guides leukocytes across epithelial barriers. Polarized hepatic epithelia organize their apical membrane domain into bile canaliculi and ducts, which are not accessible to circulating immune cells but that nevertheless confine most of ICAM-1. Here, by analyzing ICAM-1_KO human hepatic cells, liver organoids from ICAM-1_KO mice and rescue-of-function experiments, we show that ICAM-1 regulates epithelial apicobasal polarity in a leukocyte adhesion-independent manner. ICAM-1 signals to an actomyosin network at the base of canalicular microvilli, thereby controlling the dynamics and size of bile canalicular-like structures. We identified the scaffolding protein EBP50/NHERF1/ SLC9A3R1, which connects membrane proteins with the underlying actin cytoskeleton, in the proximity interactome of ICAM-1. EBP50 and ICAM-1 form nano-scale domains that overlap in microvilli, from which ICAM-1 regulates EBP50 nano-organization. Indeed, EBP50 expression is required for ICAM-1-mediated control of BC morphogenesis and actomyosin. Our findings indicate that ICAM-1 regulates the dynamics of epithelial apical membrane domains beyond its role as a heterotypic cell– cell adhesion molecule and reveal potential therapeutic strategies for preserving epithelial architecture during inflammatory stress

    Halorhabdus tiamatea: Proteogenomics and glycosidase activity measurements identify the first cultivated euryarchaeon from a deep-sea anoxic brine lake as potential polysaccharide degrader

    Get PDF
    Summary: Euryarchaea from the genus Halorhabdus have been found in hypersaline habitats worldwide, yet are represented by only two isolates: Halorhabdus utahensisAX-2T from the shallow Great Salt Lake of Utah, and Halorhabdus tiamateaSARL4BT from the Shaban deep-sea hypersaline anoxic lake (DHAL) in the Red Sea. We sequenced the H.tiamatea genome to elucidate its niche adaptations. Among sequenced archaea, H.tiamatea features the highest number of glycoside hydrolases, the majority of which were expressed in proteome experiments. Annotations and glycosidase activity measurements suggested an adaptation towards recalcitrant algal and plant-derived hemicelluloses. Glycosidase activities were higher at 2% than at 0% or 5% oxygen, supporting a preference for low-oxygen conditions. Likewise, proteomics indicated quinone-mediated electron transport at 2% oxygen, but a notable stress response at 5% oxygen. Halorhabdus tiamatea furthermore encodes proteins characteristic for thermophiles and light-dependent enzymes (e.g. bacteriorhodopsin), suggesting that H.tiamatea evolution was mostly not governed by a cold, dark, anoxic deep-sea habitat. Using enrichment and metagenomics, we could demonstrate presence of similar glycoside hydrolase-rich Halorhabdus members in the Mediterranean DHAL Medee, which supports that Halorhabdus species can occupy a distinct niche as polysaccharide degraders in hypersaline environments.This study was supported by the EU FP7 project MAMBA (‘Marine Metagenomics for New Biotechnological Applications’, FP7‐KBBE‐2008–226977, the Spanish Ministry of Economy and Competitiveness (grant BIO2011–25012) and the Max Planck Society. H.T., O.V.G. and P.N.G. acknowledge the support of EU FP7 for the project MicroB3 (OCEAN‐2011‐287589).Peer Reviewe

    Halorhabdus tiamatea: Proteogenomics and glycosidase activity measurements identify the first cultivated euryarchaeon from a deep-sea anoxic brine lake as potential polysaccharide degrader.

    Get PDF
    Euryarchaea from the genus Halorhabdus have been found in hypersaline habitats worldwide, yet are represented by only two isolates: Halorhabdus utahensis AX-2T from the shallow Great Salt Lake of Utah, and Halorhabdus tiamatea SARL4BT from the Shaban deep-sea hypersaline anoxic lake (DHAL) in the Red Sea. We sequenced the H. tiamatea genome to elucidate its niche adaptations. Among sequenced archaea, H. tiamatea features the highest number of glycoside hydrolases, the majority of which were expressed in proteome experiments. Annotations and glycosidase activity measurements suggested an adaptation towards recalcitrant algal and plant-derived hemicelluloses. Glycosidase activities were higher at 2% than at 0% or 5% oxygen, supporting a preference for low-oxygen conditions. Likewise, proteomics indicated quinone-mediated electron transport at 2% oxygen, but a notable stress response at 5% oxygen. Halorhabdus tiamatea furthermore encodes proteins characteristic for thermophiles and light-dependent enzymes (e.g. bacteriorhodopsin), suggesting that H. tiamatea evolution was mostly not governed by a cold, dark, anoxic deep-sea habitat. Using enrichment and metagenomics, we could demonstrate presence of similar glycoside hydrolase-rich Halorhabdus members in the Mediterranean DHAL Medee, which supports that Halorhabdus species can occupy a distinct niche as polysaccharide degraders in hypersaline environments

    Understanding the antimicrobial mechanism of TiO2-based nanocomposite films in a pathogenic bacterium

    Get PDF
    Titania (TiO2)-based nanocomposites subjected to light excitation are remarkably effective in eliciting microbial death. However, the mechanism by which these materials induce microbial death and the effects that they have on microbes are poorly understood. Here, we assess the low dose radical-mediated TiO2 photocatalytic action of such nanocomposites and evaluate the genome/proteome-wide expression profiles of Pseudomonas aeruginosa PAO1 cells after two minutes of intervention. The results indicate that the impact on the gene-wide flux distribution and metabolism is moderate in the analysed time span. Rather, the photocatalytic action triggers the decreased expression of a large array of genes/proteins specific for regulatory, signalling and growth functions in parallel with subsequent selective effects on ion homeostasis, coenzyme-independent respiration and cell wall structure. The present work provides the first solid foundation for the biocidal action of titania and may have an impact on the design of highly active photobiocidal nanomaterial

    ICAM-1 nanoclusters regulate hepatic epithelial cell polarity by leukocyte adhesion-independent control of apical actomyosin

    Get PDF
    Epithelial intercellular adhesion molecule (ICAM)-1 is apically polarized, interacts with, and guides leukocytes across epithelial barriers. Polarized hepatic epithelia organize their apical membrane domain into bile canaliculi and ducts, which are not accessible to circulating immune cells but that nevertheless confine most of ICAM-1. Here, by analyzing ICAM-1_KO human hepatic cells, liver organoids from ICAM-1_KO mice and rescue-of-function experiments, we show that ICAM-1 regulates epithelial apicobasal polarity in a leukocyte adhesion-independent manner. ICAM-1 signals to an actomyosin network at the base of canalicular microvilli, thereby controlling the dynamics and size of bile canalicular-like structures. We identified the scaffolding protein EBP50/NHERF1/SLC9A3R1, which connects membrane proteins with the underlying actin cytoskeleton, in the proximity interactome of ICAM-1. EBP50 and ICAM-1 form nano-scale domains that overlap in microvilli, from which ICAM-1 regulates EBP50 nano-organization. Indeed, EBP50 expression is required for ICAM-1-mediated control of BC morphogenesis and actomyosin. Our findings indicate that ICAM-1 regulates the dynamics of epithelial apical membrane domains beyond its role as a heterotypic cell–cell adhesion molecule and reveal potential therapeutic strategies for preserving epithelial architecture during inflammatory stress

    Discovery of anaerobic lithoheterotrophic haloarchaea, ubiquitous in hypersaline habitats

    Get PDF
    Hypersaline anoxic habitats harbour numerous novel uncultured archaea whose metabolic and ecological roles remain to be elucidated. Until recently, it was believed that energy generation via dissimilatory reduction of sulfur compounds is not functional at salt saturation conditions. Recent discovery of the strictly anaerobic acetotrophic Halanaeroarchaeum compels to change both this assumption and the traditional view on haloarchaea as aerobic heterotrophs. Here we report on isolation and characterization of a novel group of strictly anaerobic lithoheterotrophic haloarchaea, which we propose to classify as a new genus Halodesulfurarchaeum. Members of this previously unknown physiological group are capable of utilising formate or hydrogen as electron donors and elemental sulfur, thiosulfate or dimethylsulfoxide as electron acceptors. Using genome-wide proteomic analysis we have detected the full set of enzymes required for anaerobic respiration and analysed their substrate-specific expression. Such advanced metabolic plasticity and type of respiration, never seen before in haloarchaea, empower the wide distribution of Halodesulfurarchaeum in hypersaline inland lakes, solar salterns, lagoons and deep submarine anoxic brines. The discovery of this novel functional group of sulfur-respiring haloarchaea strengthens the evidence of their possible role in biogeochemical sulfur cycling linked to the terminal anaerobic carbon mineralisation in so far overlooked hypersaline anoxic habitats.</p

    Measuring underreporting and under-ascertainment in infectious disease datasets: a comparison of methods

    Get PDF
    Gibbons CL, Mangen M-JJ, Plaß D, et al. Measuring underreporting and under-ascertainment in infectious disease datasets: a comparison of methods. BMC Public Health. 2014;14(1): 147.Background: Efficient and reliable surveillance and notification systems are vital for monitoring public health and disease outbreaks. However, most surveillance and notification systems are affected by a degree of underestimation (UE) and therefore uncertainty surrounds the 'true' incidence of disease affecting morbidity and mortality rates. Surveillance systems fail to capture cases at two distinct levels of the surveillance pyramid: from the community since not all cases seek healthcare (under-ascertainment), and at the healthcare-level, representing a failure to adequately report symptomatic cases that have sought medical advice (underreporting). There are several methods to estimate the extent of under-ascertainment and underreporting. Methods: Within the context of the ECDC-funded Burden of Communicable Diseases in Europe (BCoDE)-project, an extensive literature review was conducted to identify studies that estimate ascertainment or reporting rates for salmonellosis and campylobacteriosis in European Union Member States (MS) plus European Free Trade Area (EFTA) countries Iceland, Norway and Switzerland and four other OECD countries (USA, Canada, Australia and Japan). Multiplication factors (MFs), a measure of the magnitude of underestimation, were taken directly from the literature or derived (where the proportion of underestimated, under-ascertained, or underreported cases was known) and compared for the two pathogens. Results: MFs varied between and within diseases and countries, representing a need to carefully select the most appropriate MFs and methods for calculating them. The most appropriate MFs are often disease-,country-, age-, and sex-specific. Conclusions: When routine data are used to make decisions on resource allocation or to estimate epidemiological parameters in populations, it becomes important to understand when, where and to what extent these data represent the true picture of disease, and in some instances (such as priority setting) it is necessary to adjust for underestimation. MFs can be used to adjust notification and surveillance data to provide more realistic estimates of incidence
    • 

    corecore