
Gibbons et al. BMC Public Health 2014, 14:147
http://www.biomedcentral.com/1471-2458/14/147

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Publications at Bielefeld University
RESEARCH ARTICLE Open Access
Measuring underreporting and
under-ascertainment in infectious disease
datasets: a comparison of methods
Cheryl L Gibbons1*, Marie-Josée J Mangen2, Dietrich Plass3, Arie H Havelaar4,5, Russell John Brooke2, Piotr Kramarz6,
Karen L Peterson1, Anke L Stuurman4,7, Alessandro Cassini6, Eric M Fèvre8,9, Mirjam EE Kretzschmar2,4,
On behalf of the Burden of Communicable diseases in Europe (BCoDE) consortium
Abstract

Background: Efficient and reliable surveillance and notification systems are vital for monitoring public health and
disease outbreaks. However, most surveillance and notification systems are affected by a degree of underestimation
(UE) and therefore uncertainty surrounds the ‘true’ incidence of disease affecting morbidity and mortality rates.
Surveillance systems fail to capture cases at two distinct levels of the surveillance pyramid: from the community
since not all cases seek healthcare (under-ascertainment), and at the healthcare-level, representing a failure to
adequately report symptomatic cases that have sought medical advice (underreporting). There are several methods
to estimate the extent of under-ascertainment and underreporting.

Methods: Within the context of the ECDC-funded Burden of Communicable Diseases in Europe (BCoDE)-project, an
extensive literature review was conducted to identify studies that estimate ascertainment or reporting rates for
salmonellosis and campylobacteriosis in European Union Member States (MS) plus European Free Trade Area (EFTA)
countries Iceland, Norway and Switzerland and four other OECD countries (USA, Canada, Australia and Japan).
Multiplication factors (MFs), a measure of the magnitude of underestimation, were taken directly from the literature
or derived (where the proportion of underestimated, under-ascertained, or underreported cases was known) and
compared for the two pathogens.

Results: MFs varied between and within diseases and countries, representing a need to carefully select the most
appropriate MFs and methods for calculating them. The most appropriate MFs are often disease-, country-,
age-, and sex-specific.

Conclusions: When routine data are used to make decisions on resource allocation or to estimate epidemiological
parameters in populations, it becomes important to understand when, where and to what extent these data
represent the true picture of disease, and in some instances (such as priority setting) it is necessary to adjust for
underestimation. MFs can be used to adjust notification and surveillance data to provide more realistic estimates of
incidence.
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Background
Efficient and reliable surveillance and notification systems
are vital for monitoring public health trends and disease
outbreaks. They also often form the backbone of evidence-
based decision-making processes, as well as infectious dis-
ease (ID) public health policies that deal with prioritisation,
and the planning of intervention measures and healthcare
services [1]. However, there are limitations associated with
the use of data from surveillance and notification systems
since most systems are affected by a degree of underesti-
mation and therefore uncertainty surrounds the ‘true’ inci-
dence of disease [2]. IDs are considered particularly prone
to underestimation due to their specific characteristics (e.g.
asymptomatic or self-limiting disease courses) and are
therefore represented inadequately by raw surveillance
data. Thus, when routine data are used to inform decisions
relating to resource allocation or to estimate epidemio-
logical parameters in a population, it becomes important
to understand when, where and to what extent these data
do or do not comprehensively represent the true picture of
disease. Furthermore, in certain circumstances, such as pri-
ority setting, it is appropriate to adjust infectious disease
datasets in order to account for the portion not captured
by the surveillance system. There are several metrics that
can be employed in priority setting with Disability-
Adjusted Life Years (DALYs) being just one composite
health metric that combines and measures adverse health
effects and premature mortality in a single unit. DALYs
were chosen by the European Centre for Disease Preven-
tion and Control (ECDC) and used within the Burden of
Communicable Diseases in Europe (BCoDE)-project to
generate evidence-based and comparable burden of disease
(BoD) estimates for 32 IDs across European Member States
(MS) [3-6]. A major prerequisite of DALY calculations is
‘true’ incidence data but since data are often obtained from
(inter)national-level routine surveillance datasets that are
frequently incomplete, data must be adjusted before serving
as input for computing disease burden.
Here we present an overview of why, where and in what

form underestimation occurs within the morbidity surveil-
lance pyramid (Figure 1A) and we give several disease-
specific examples from the literature of the methods that
can be used to estimate the extent of underestimation.
Furthermore, we compare the extent of underestimation
and multiplication factors to adjust for it using key exam-
ples from the literature for two diseases, salmonellosis and
campylobacteriosis. This body of work was a core aspect
of the BCoDE-project.

Definitions
Underestimation (UE), as defined here, can be under-
stood as the many ways in which surveillance systems
fail or are unable to reflect all infections in a given popu-
lation. Mathematically, UE is the number of infections
estimated to have occurred in a population that have not
been captured by the surveillance system for every re-
ported case over a given time period. UE can be split into
two distinct levels as represented by the surveillance pyra-
mid for IDs (Figure 1A); under-ascertainment (UA) of infec-
tions occurring at the community-level and underreporting
(UR) of infections occurring at the healthcare-level. Under-
ascertained infections occur in individuals that do not seek
healthcare and hence cannot be captured by surveillance
systems which are typically designed to capture cases that
do seek healthcare. UA can be estimated as the number of
infections occurring in individuals that do not attend health-
care services for every case that attends. There is a symp-
tomatic fraction of all under-ascertained cases that do not
attend healthcare due to mild symptoms and/or the know-
ledge that the illness is self-limiting or for some other rea-
son, and an asymptomatic fraction that do not seek
healthcare as they are not aware of their infection status due
to lack of symptoms [10]. Underreported infections are in-
fections in individuals that do seek healthcare, but whose
health event is not captured by the surveillance system and
not notified through the notification system [7,8,11,12]. UR
can be estimated as the number of infected individuals at-
tending healthcare services whose health event is not re-
ported to the appropriate public health body for every
attending case whose health event is reported. UR can be
due to under-diagnosis which accounts for the cases attend-
ing healthcare but whose infection or pathogen is not diag-
nosed or misdiagnosed [7,8], and under-notification which
accounts for the failure to report (using correct Inter-
national Classification of Diseases (ICD) codes [13,14]) all
positive diagnoses through the notification system [15,16].
Reporting completeness refers to the proportion of cases at-
tending healthcare whose health event was correctly diag-
nosed and appropriately reported [17]. These technical
terms are used frequently in the literature, however often
with varying definitions. The definitions of UA, UR and UE
as stated here were developed during the BCoDE-project
[3,18] and will be used as such for the remainder of the
article.

Factors influencing UA in morbidity datasets
Not all people who are infected with a pathogen seek
healthcare [19]. One important reason for this is that
when symptoms are absent, mild or self-limiting, there is
a lack of urgency to seek healthcare [8]. Therefore, surveil-
lance systems can only capture cases with symptoms that
are severe enough to motivate infected individuals to at-
tend healthcare services. Health literacy also influences
the decision to attend healthcare services or not. If a com-
munity has a poor understanding of when to seek health-
care and lacks knowledge of the severity or duration of an
illness; then the uptake of healthcare services and levels of
case ascertainment could be lower than expected. Such
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Figure 1 Deriving multiplication factors from the morbidity surveillance pyramid. A: The morbidity surveillance pyramid is often used to
illustrate the availability of morbidity data at each surveillance level. With each ascending level (from the community, to healthcare institutions
(GPs, hospital, laboratory), to regional and national public health agencies); data availability shrinks and only a fraction of cases from the level
below is captured [7-9]. In contrast to the narrow tip of the pyramid which represents data held by national public health agencies, the base is
wide as it holds all infections in the community. The difference between the number at the tip and base can be considered cases lost to
‘underestimation’ (UE). B: The proportions of infections that are symptomatic, that attend healthcare, and that are reported are represented in this
decision tree model. Here, only 55% of all infected individuals attending healthcare are reported through the notification system. If 1000 cases
were reported then a MF of 1.8 (=100/55) could be derived and would correct for those underreported cases. The true number attending
healthcare would be 1800 cases. Likewise, if only 60% of symptomatic cases attended healthcare, then a MF of 1.7 (=100/60) would correct for
under-ascertainment of symptomatic cases. The true number of cases attending healthcare would be 3000 symptomatic cases (=1.7*1800). Finally,
since 90% of infections were symptomatic, a MF of 1.1 (=100/90) would correct for under-ascertainment of asymptomatic cases. The true number
of infections would be 3300 (=1.1*3000). A MF to correct for total underestimation of symptomatic cases in one step would be 3.06 (=1.8*1.7)
and for all infections 3.4 (=1.8*1.7*1.1). ‘All infections’ shaded in orange in Figure 1A represents the same population as the orange box in
Figure 1B. ‘Cases reported’ in blue in Figure 1A represents the same population as the blue box in Figure 1B.
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awareness and recognition of disease as well as the ur-
gency or perceived need to seek healthcare can vary
through time and space, particularly during outbreak years
and especially if there is enhanced surveillance or wide-
spread campaigns and intensive media coverage [20].
Compared with non-outbreak years, the proportion of
cases in a population that is ascertained is expected to be
greater. Health literacy and perceived need for healthcare
may also explain often observed differences between age-
and sex-specific ascertainment rates with, for example,
children aged less than 15 years being statistically more
likely to seek healthcare for gastroenteritis compared to
adults (30–64 years) [21].
In addition, cultural and religious factors could prevent

individuals from seeking healthcare if, for example, there is
stigma or negative beliefs associated with healthcare ser-
vices, illness and treatment [22,23]. There may also be legal,
administrative and financial barriers to attending healthcare
if individuals are not registered or are unable to register
and if healthcare is dependent on the legal status of an indi-
vidual or ability to pay. Migrants or marginalised groups
may be particularly affected by this [24] and in addition to
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not having their disease episode captured by the surveil-
lance system, they may not be enumerated at all and hence
do not contribute to the country population count or de-
nominator. Individuals from remote communities and their
illness may also be uncounted due to healthcare services
being physically unreachable. Overall, ascertainment rates
are thought to vary significantly within and between disease
groups, population groups and countries.

Factors influencing UR in morbidity datasets
Not all cases that attend healthcare will have their health
status correctly diagnosed and reported to the appropriate
health authorities. This break in the surveillance chain can
occur within clinics, hospitals or laboratories due to
healthcare workers lacking in ability, capacity or know-
ledge of how and when to act. Under-diagnosis may arise
when biological samples are not requested from or pro-
vided by patients, where there are budget restrictions for-
cing healthcare professionals to limit their requests for
testing samples, lack of knowledge of which tests to per-
form, inadequate diagnostic tools, or due to restrictions of
laboratory testing regimes (regulations on which tests to
apply routinely, and lack of availability of more specialised
tests). Under-notification may result from an inadequate
reporting system or lack of knowledge of when, for which
diseases and how to report correctly including knowledge
of ICD codes [25-29]. The proportion of cases reported is
often higher where there is a legal requirement to report
(some diseases or pathogens have mandatory reporting
statuses) [30] or where there are incentives for healthcare
workers to request or test biological samples from patients
or to report results [26]. Furthermore, where there is a
perceived urgency to request biological samples or report
cases, for example during outbreak years where there is
higher awareness and chance of recognition and motiv-
ation for testing [31,32], reporting rates are likely to in-
crease. In contrast, UR may be greater for rarer diseases,
those with only occasional outbreaks or those without
mandatory reporting statuses. This perceived urgency or
necessity to test or report tends to increase for more ser-
ious conditions (severity and duration of illness [8,33])
and can also be age- or sex-dependent [34]. Incomplete
reporting of additional information, such as age and sex of
the patient, concurrent infections or sequelae following an
initial infection [35] becomes particularly important when
UR for a particular disease is age- or sex-specific.

Identifying areas and extent of UE
Various study designs can be used to determine the ex-
tent of UR and UA in the surveillance system.

Community-based studies
Community-based studies (CBS) aim to generate new esti-
mates of pathogen carriage or infection in a (representative)
sample of the population. This alone is useful and interest-
ing but in addition, if this new estimate is considered the
‘true’ incidence in the community, it can be compared to
notification data and the magnitude of UE deduced. This
order of magnitude can then be used as a multiplication
factor (MF) (Figure 1B) to adjust disease datasets assuming
that the base value to which the MF is being applied was
created using the same data type (i.e. MF calculated by
comparing CBS data with notification data is used to adjust
other notification datasets, and not laboratory data). These
observational studies can also be used to produce incidence
rates of symptomatic and asymptomatic cases as well as es-
timate the specific proportion of symptomatic cases pre-
senting to healthcare facilities (by asking about attendance
in the questionnaire). Furthermore, the proportion of cases
underreported can be estimated by a variation of CBS in
which healthcare professionals are surveyed to gain infor-
mation on propensity to request biological samples and
reporting habits.
CBS can take many forms but generally involve active

searching within the community for disease episodes,
pathogen carriage or infection, with questionnaire-based
data acquisition often accompanied by biological sam-
pling. Active searching can be conducted face-to-face, by
telephone, internet or post, with several possible study de-
signs e.g. based on probability samples, prospective or
retrospective cohorts, population cross-sections, involving
representative samples of the whole population or certain
interest or high-risk groups only. CBS are especially
useful for diseases commonly under-ascertained (i.e.
those with many mild and asymptomatic cases of mostly
self-limiting illness) and where an unknown burden
exists within the community, e.g. sexually transmitted
infections with Chlamydia trachomatis [36-40] or Neis-
seria gonorrhoea [36-39,41-44]; influenza and influenza-
like illnesses [45,46]; and food and water-borne diseases
[2,47-54]). The first and second Infectious Intestinal
Disease studies (IID1 and IID2) were prospective com-
munity cohort studies that estimated overall incidence
of infectious intestinal disease (IID) in the UK commu-
nity, the proportion seeking healthcare (ascertained),
and the proportion reported to the national public
health agency [2,11,47,55]. Weekly surveys (by email or
prepaid postcard) recorded if participants had experi-
enced diarrhoea and/or vomiting and if they had, they
were asked additional questions and requested to pro-
vide a stool sample. Similarly, several studies have
employed statistical and mathematical methods to esti-
mate incidence and UE using data collected during a
Dutch prospective community-based cohort study of
gastroenteritis (SENSOR) and a Dutch GP-based cohort
of gastroenteritis (NIVEL) (e.g. [56-63]).
CBS are not without limitations as bias can arise at

numerous points. Sampling bias, owing to non-random
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sampling of a population, can result in a study that is
not representative of the entire population with certain
groups (such as ethnic, migrant, age or occupational) in-
advertently excluded from the study because they are
unregistered, not easily locatable, do not have access to a
telephone (in the case of telephone surveys), have language
barriers or are marginalised for other reasons. Responder
bias can also lead to unrepresentative samples since only
certain groups of people will agree to participate, and meas-
urement bias can result from case definitions that are
undefined, too general, too strict or simply not used con-
sistently. Additionally, interviewers may ask questions or
interpret responses in a leading manner or respondents
may induce bias during disease occurrence recall. To min-
imise the effects of bias, Wilking et al. [54] took several
steps in a recent population-based telephone survey of
acute gastrointestinal illness in Germany including; contact-
ing listed and unlisted telephone numbers and using the
‘last-birthday method’ to reduce responder bias, using the
computer-assisted telephone interview (CATI) method to
minimise interviewer bias and applying study weights to
improve representation of the target population. Telephone
surveys, however, have a further limitation associated with
them since disease occurrence tends to be based on self-
reported symptoms and so without clinically-determined or
laboratory-confirmed diagnoses, there is uncertainty sur-
rounding the causative agent and incidence of infection. To
address this, Kubota et al. [50] used data from population-
based telephone surveys to adjust the number of cases for
each pathogen from active laboratory-based surveillance
(whilst modelling for uncertainty). Other telephone sur-
veys focus on general conditions, such as gastroenteritis,
rather than specific pathogens and these have been suc-
cessfully applied in many countries (e.g. [54,64-66]) with
the results often the basis for pyramid reconstruction ac-
tivities (see below).

Serological surveys
Serological surveys are a specific type of CBS that meas-
ure sero-incidence (the rate of new infections) or sero-
prevalence (the total number of infections in the com-
munity or cohort) as quantified by antigen or antibody
positivity. This CBS can capture asymptomatic and
symptomatic, historical and acute infections but if bio-
logical sampling is combined with a questionnaire ask-
ing about disease episodes, or if the antibody or antigen
threshold at which symptoms manifest is known; then
the symptomatic fraction can be obtained (e.g. hepatitis
B [67], hepatitis B and C [68], pertussis [69], measles
[70], HIV [71]). This is crucial for BoD studies since, for
the majority of diseases, it is only clinical manifestations
and not asymptomatic infections that contribute to bur-
den in terms of DALYs. The exceptions to this are the
few infectious diseases with a possible asymptomatic
acute stage that can result in sequelae (and death) at a
later time and hence contribute to disease burden (includ-
ing hepatitis B, hepatitis C, chlamydia, Invasive Meningo-
coccal Disease, and Q-fever). When calculating DALYs for
these diseases, symptomatic cases serve as input to esti-
mate the numbers of asymptomatic infections and thus
the calculated burden attributable to asymptomatic infec-
tions is included in the final burden estimate [4].
It is often difficult to differentiate between historic

and current infections and therefore it is important to test
for recognised serological markers of recent infection and
to have full knowledge of antibody decay rates in different
populations [72,73]. Furthermore, antibodies resulting
from natural exposure versus vaccination cannot be distin-
guished and thus serological surveys of diseases with uni-
versal vaccine coverage, including tuberculosis (BCG
vaccine), measles, rubella, and other childhood vaccine-
preventable diseases, may have limited use.

Returning traveller studies (RTS)
Returning traveller studies (RTS) are further examples of
CBS where individuals returning from abroad represent
sentinel populations for the reported national incidence
of infection in a traveller’s destination of travel [74]. In
RTS, the risk of infection for travellers from country A
visiting country B is calculated by taking the number of
infected travellers returning home from country B from
surveillance records as a numerator, and the total num-
ber of travellers from country A visiting country B from
travel pattern databases as the denominator. This meas-
ure of risk can then be used to generate a new estimate
of incidence in country B (risk multiplied by the popula-
tion size), which when compared to the national notifi-
cation records of country B, can generate a MF of
underestimation. Using this method, the incidence and
proportion of underestimated cases of salmonellosis in
several European countries was calculated by de Jong
and Ekdahl [75] by comparing the incidence of infection
in Swedish returning travellers to the national incidence
in the countries the travellers had returned from, using
Norway as a reference country. This not only produced
national-level comparable estimates of incidence, but
also a MF of UE (or in this case ‘under-detection index’).
More recently, Havelaar et al. [76] calculated incidence
rates of salmonellosis and campylobacteriosis and MFs
based on disease risks of returning Swedish travellers,
anchored to data from SENSOR, the Dutch population-
based study on gastroenteritis (see Tables 1 and 2).
While RTS generate comparable estimates of incidence

and multipliers across different countries, there are several
assumptions and limitations. Even if the travel patterns
database is representative of the whole population and that
the origin of infection, as reported in surveillance data, is
correct [74]; in calculating risk of infection, the numerator



Table 1 A comparison of multiplication factors (MFs) for salmonellosis in several countries

Country Underestimation
MF

Primary
study type

Study Under-ascertainment
MF

Primary
study type

Study Underreporting
MF

Primary
study type

Study

Austria 3 RTS [75]

Austria 11 RTS [76]

Belgium 1.9 RTS [75]

Belgium 3.5 RTS [76]

Bulgaria 271 RTS [75]

Bulgaria 718.5 RTS [76]

Croatia 30.6 RTS [75]

Cyprus 71.2 RTS [75]

Cyprus 173.2 RTS [76]

Czech Republic 3 RTS [75]

Czech Republic 28.9 RTS [76]

Denmark 1.8 RTS [75]

Denmark 4.4 RTS [76]

Denmark 17 PRC [9]

Denmark NT UEinf: 325 (5-95%
quartiles: 190–505)

Sero/MOD [77]

Estonia 1.3 RTS [75]

Estonia 16.9 RTS [76]

Finland 0.6 RTS [75]

Finland 0.4 RTS [76]

France 8.3 RTS [75] S.entd. $ : Data1: 7.1
(95% CI: 6.7-7.7)

CRS [78]

Data2: 12.5
(95% CI: 11.1-14.3)

Data3: 2
(95% CI: 1.9-2.2)

Spp other than
S.entd.& S.typh.

Data1: 12.5
(95% CI: 7.1-16.7)

Data2: 16.6
(95% CI: 10–25)

Data3: 2.0
(95% CI: 1.1-2.8)

France 26.9 RTS [76]

Germany 1.8 RTS [75]

Germany 9.8 RTS [76]

Germany 6.7 PRC [9]

Greece 97.7 RTS [75] 1.75 MOD/RC [79]

Greece 1228.5 RTS [76]

Greece 51.45
(PERT: 3.2; 99.7)

BoD/CRS [80]

Hungary 5.5 RTS [75]

Hungary 66.8 RTS [76]

Ireland 4.3 RTS [75]

Ireland 5.4 RTS [76]

Italy 13.1 RTS [75]
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Table 1 A comparison of multiplication factors (MFs) for salmonellosis in several countries (Continued)

Italy 71.7 RTS [76]

Italy 17 PRC [9]

Latvia 11.7 RTS [75]

Latvia 44.3 RTS [76]

Lithuania 10 RTS [75]

Lithuania 59.1 RTS [76]

Luxembourg 4.5 RTS [76]

Malta 92.6 RTS [75]

Malta 222.7 RTS [76]

Poland 16.2 RTS [75]

Poland 114.1 RTS [76]

Poland 18 PRC [9]

Portugal 378 RTS [75]

Portugal 2082.9 RTS [76]

Romania 332 RTS [75]

Romania 349.9 RTS [76]

Slovakia 3.5 RTS [75]

Slovakia 53.2 RTS [76]

Slovenia 10 RTS [75]

Slovenia 40.3 RTS [76]

Spain 103 RTS [75]

Spain 214.2 RTS [76] NT: Data 1 = 2.0
(95% CI: 2.0 - 2.1)

CRS [81]

Data 2 = 1.5
(95% CI: 1.4 - 1.5)

Sweden 0.5 RTS [76]

Sweden 10 PRC [9] Data 1 =1.05,
Data 2 =1.02

CRS [82]

The Netherlands 7.7 RTS [75]

The Netherlands 26.3 (ref) RTS [76]

The Netherlands 24.7 (5-95%
quartiles: 5.2 - 64.7)

BRI/BoD [57] 5.8 (5-95%
quartiles: 0.8 - 25.6)

BRI [57] 4.3 (5-95% quartiles:
2.5 - 6.5)

BRI [57]

The Netherlands 14 (5-95%
quartiles: 3.6 – 56)

CBS/BoD [56] 6.5 (5-95%
quartiles: 0.0 - 20)

CBS/BoD [56]

The Netherlands 14.3 LAB [62]

The Netherlands 20 PRC [9]

United Kingdom 4.3 RTS [75]

United Kingdom 7.3 RTS [76]

United Kingdom 4.7
(95% CI : 1.2 - 18.2)

CBS [47] 3.4
(95% CI: 0.4 - 32.2)

CBS [47] 1.4
(95% CI: 0.6 - 3.3)

CBS [47]

United Kingdom 3.2
(95% CI : 1.4 - 12.0)

CBS [2] GP only, 1.4
(95% CI: 0.7 - 2.8)

CBS [2]

United Kingdom 40 PRC [9]

United Kingdom NT, UElab: 3.9 CBS/BoD [55]

EU-27
(excl.Croatia)

57.5 (11–140) RTS [76]

Iceland 0.4 RTS [75]

Norway 1.0 (ref) RTS [75]
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Table 1 A comparison of multiplication factors (MFs) for salmonellosis in several countries (Continued)

Norway 1.2 RTS [76]

Switzerland 7.1 RTS [76]

USA NT, UElab: BD 9.8,
NBD 67.7, total 38.6

CBS/BoD [49] NT, BD 6.8, NBD 8.6 [49]

USA NT, 38 (taken
from [49])

BoD [83] NT, BD - 2.86
(PERT 1.96 – 5.26)

BoD [84] NT UN, 1 [84]

NBD – 5.56
(PERT 5–6.67)

Canada 13 - 37 PM [85]

Australia ‡BD:1-2d: 11.39
(95% CrI: 8.49–16.36)

PM [33] ‡BD: 1-2d: 10
(95% CrI: 7.1-14.3)

[33]

3-4d: 2.82 (95% CrI:
2.17–3.98)

3-4d: 2.3
(95% CrI: 1.9-3.2)

≥5d: 1.81 (95% CrI:
1.33–2.72)

≥5d: 1.5 (95% CrI:
1.1-2.2)

NBD: 1-2d 143.29
(95% CrI: 83.3–371)

NBD; 1-2d: 10
(95% CrI: 7.1-14.3)

3-4d 13.06 (95% CrI:
6.37–67.83)

3-4d: 2.3 (95% CrI:
1.9-3.2)

≥5d 3.93 (95% CrI:
2.10–11.92)

≥5d: 1.5 (95% CrI:
1.1-2.2)

Overall: 7
(95% CrI: 4–16)

Japan 74.0 (5-95%
quartiles: 35.8, 140.7)

CBS [50] S.brae. Age <
10 years: 1.2,

CBS [48]

> = 10 years:
1.7, Overall:1.6,

1. This table lists all extracted or derived MFs (with variance shown as 95% CI, 95% CrI, PERT distribution (max, min, mode), or 5-95% quartiles where available)
from relevant studies found during the extensive literature review. MFs give an estimation of the extent of UE (combined UA and UR), UA and UR for salmonellosis
in a particular country; the higher the MF, the higher the proportion of cases not captured by the surveillance system. These MFs could be applied to official
figures as reported by public health agencies to adjust for UE and give a new estimate of total symptomatic infections occurring in a population at a given time.
Exceptions include; “UEinf” where the MF can adjust official figures from public health agencies and give a new estimate of total infections (both symptomatic
and asymptomatic) occurring in a population at a given time, and “UElab” where the MF can adjust official laboratory figures of laboratory confirmed infections
and give a new estimate of total infections (both symptomatic and asymptomatic) occurring in a population at a given time. MFs of UA and UR can be multiplied
together to make one MF of UE.
2. Study types abbreviations: CBS: Community-based study, RTS: Returning traveller study, CRS: Capture-recapture study, PRC: Pyramid reconstruction model, BRI:
Bayesian risk of infection model, BoD: Burden of disease calculation, Sero: Analysis of serology data, LAB: Analysis of laboratory surveillance, RC: Analysis of reporting
completeness, PM: Probability model, OUT: Outbreak analysis, MOD: Modelling other. Symptoms abbreviations: NT: Non-typhoidal salmonellosis; NBD: Non-bloody
diarrhoea; BD: Bloody diarrhoea; severity of diarrhoea (d = days). Salmonella species abbreviations: S.entd. : S. enteritidis; S.typh. : S.typhimurium; S.brae. : S.braenderup.Other
abbreviations: UN: Under-notification of laboratory confirmed infection; GP only: cases attending GP surgeries (not hospitals) only; $ Estimates corrected by the positive
predictive value of one data source where (unlike the other two sources) notifications are not validated by a systematic procedure; ‡ No. cases in the community for
every 100 reported.
3. For CRS, a MF is given to correct for UR for each data source (i.e. MF for ‘Data 1’ will estimate the underreporting in data source 1). For MFs estimated in the
same RTS, one country will be listed as the reference country (i.e. ‘ref’) and all other countries compared to this.
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(number of infections caught abroad) will still be affected
by UR and UA. This in part is due to general reasons affect-
ing UE, but in addition travellers have different health-
seeking behaviour than that of the general population and
there may be bias in requesting samples and reporting by
health professionals following travel to certain destinations
[74]. Furthermore, in the case of Swedish travellers the
duration and reason for travel differs by country, with
many short business trips to neighbouring Scandinavian
countries but longer holidays to Mediterranean countries
[76] and therefore there is a bias in the risk estimates to-
wards countries with the most tourists [75]. The risk of
infection differs given the destination of travel but in
addition the probability of the infection being ascertained
also differs since on a longer trip, the case may have recov-
ered before returning home and attending healthcare [76].
Lastly, a traveller’s risk is not the same as the native popu-
lation’s risk due to differences in behaviours and activities,
as well as immunity to local pathogen populations [76].

Capture-Recapture Studies (CRS)
Capture-recapture studies (CRS) utilise the ecological
principle for studying populations of wildlife by marking
subjects on initial release or first capture and recovering in-
formation from them on subsequent captures [87-89]. In
terms of human disease surveillance, a personal identifier



Table 2 A comparison of multiplication factors (MFs) for campylobacteriosis in several countries

Country Underestimation
MF

Primary
study type

Study Under-ascertainment
MF

Primary
study type

Study Underreporting
MF

Primary
study type

Study

Austria 15 RTS [74]

Austria 29 RTS [76]

Belgium 25 RTS [74]

Belgium 11 RTS [76]

Bulgaria 39,000 RTS [76]

Cyprus 310 RTS [76]

Czech
Republic

11 RTS [76]

Denmark 4 RTS [74]

Denmark 4.1 RTS [76]

Denmark 29 PRC [9]

Estonia 13 RTS [76]

Finland 1.0 (ref) RTS [74] GP C.jejuni , 5.2 CBS/OUT [86]

Finland 0.4 RTS [76]

France 3,958 RTS [74]

France 280 RTS [76]

Germany 6 RTS [74]

Germany 4.4 RTS [76]

Germany 9.3 PRC [9]

Greece 47,191 RTS [74]

Hungary 52 RTS [76]

Ireland 46 RTS [74]

Ireland 29 RTS [76]

Italy 660 RTS [76]

Italy 100 PRC [9]

Lithuania 40 RTS [76]

Luxembourg 19 RTS [74]

Luxembourg 3.9 RTS [76]

Malta 90 RTS [76]

Poland 4,100 RTS [76]

Poland 72 PRC [9]

Romania 6,900 RTS [76]

Slovakia 35 RTS [76]

Slovenia 14 RTS [76]

Spain 270 RTS [76]

Sweden 0.4 RTS [76]

Sweden 17 PRC [9]

The
Netherlands

31 RTS [74]

The
Netherlands

22 (ref) RTS [76]

The
Netherlands

22.9 (5-95%
quartiles: 8.2 - 50)

BRI/BoD [57] 4.1 (5-95% quartiles:
9.3 – 56.7)

BRI/BoD [57] 5.6 BRI/BoD [57]

The
Netherlands

10.9 - 21.4 Sero [58] 5.0 - 5.4 Sero [58] 2.0 - 4.3 Sero [58]
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Table 2 A comparison of multiplication factors (MFs) for campylobacteriosis in several countries (Continued)

The
Netherlands

9.7 (5-95% quartiles:
4.1 - 23.0)

CBS / BoD [56] 4.2 (5-95% quartiles: 0.0
- 7.4)

CBS/BoD [56]

The
Netherlands

18.9 LAB [62]

The
Netherlands

49 PRC [9]

The
Netherlands

UElab, 13.94
(PERT 4.96 – 28.67)

MOD [61]

United
Kingdom

11 RTS [74]

United
Kingdom

4.4 RTS [76]

United
Kingdom

9.3 (95% CI:
6–14.4)

CBS [47] 7.2 (95% CI:
3.3 - 15.9)

CBS [47] 1.3 (95% CI:
0.9 - 1.8)

CBS [47]

United
Kingdom

52 PRC [9]

United
Kingdom

UElab 10.3 CBS /BoD [55]

United
Kingdom

7.6 (95% CI:
3.6 - 17.4)

CBS [2] 2.1
(95% CI: 5–3.0)

CBS [2]

EU-27 47 (range
0.4 - 39,000)

RTS [76]

Norway 4 RTS [74]

Norway 2.4 RTS [76]

Switzerland 3.3 RTS [76]

USA 38 (taken
from [49])

BoD [83] NT, BD: 2.9
(PERT 2.0-5.3)

BoD [84] NT UN, 1 BoD [84]

NBD: 5.6
(PERT 5–6.7)

USA

Canada 23 - 49 PM [85]

Australia ‡BD: 1-2d 12.40
(95% CrI: 9.16– 17.82)

PM [33] ‡BD: 1–2 days: 10
(95% CrI: 7.1-14.3)

PM [33]

3-4 days: 2.3
(95% CrI: 1.9-3.2)

3-4d 3.06 (95% CrI:
2.32–4.33)

≥5 days: 1.5
(95% CrI: 1.1-2.2)

≥5d 1.97 (95% CrI:
1.42–2.95)

NBD: 1–2 days: 10
(95% CrI: 7.1-14.3)
3–4 days: 2.3
(95% CrI: 1.9-3.2)NBD: 1-2d 154.2

(95% CrI: 89.3–397.6)
≥5 days: 1.5
(95% CrI: 1.1-2.2)3-4d 14.15 (95% CrI:

6.80–73.32)

≥5d 4.25 (95% CrI:
2.25–13.36)

Overall: 10
(95% CrI: 6.6–22)

1. This table lists all extracted or derived MFs (with variance shown as 95% CI, 95% CrI, PERT distribution (max, min, mode), or 5-95% quartiles where available)
from relevant studies found during the extensive literature review. MFs give an estimation of the extent of UE (combined UA and UR), UA and UR for campylobacteriosis
in a particular country; the higher the MF, the higher the proportion of cases not captured by the surveillance system. These MFs could be applied to official figures as
reported by public health agencies to adjust for UE and give a new estimate of total symptomatic infections occurring in a population at a given time. Exception is; “UElab”
where the MF can adjust official laboratory figures of laboratory confirmed infections and give a new estimate of total infections (both symptomatic and asymptomatic)
occurring in a population at a given time. MFs of UA and UR can be multiplied together to make one MF of UE.
2. For abbreviations and symbols, see footnote 2 for Table 1.
3. For MFs estimated in the same RTS, one country will be listed as the reference country (i.e. ‘ref’) and all other countries compared to this.
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number or code usually represents the ‘marker’ and the
‘captures’ are records of disease episodes, colonisations or
infections found in data sources including national notifica-
tions of morbidity and death, hospital and GP records, la-
boratory reports, as well as other public health registries
[87,90]. Two or more data sources are compared (Hest
et al. stated that at least three are preferred to avoid corre-
lations [90]) or cross-linked (through personal identifiers)
and duplicates removed to approximate reporting com-
pleteness of each data source, identify the cases that would
have been missed if using only a single data source and cal-
culate a new estimate of incidence (Figure 2). There are
several examples of CRS studies in the literature spanning a
wide range of both communicable and non-communicable
diseases (e.g. CRS of tuberculosis in several countries;
Greece [79,91], Italy [92,93], the Netherlands [94,95],
Romania [96], UK [97-99] and USA [17,100,101]). Despite
the usefulness of this method, some cases attending health-
care are not captured in any single data source or are not
correctly recorded and hence the new incidence of cases
will still be affected by UR [89]. In addition, CRS only cor-
rect for UR of infections and do not account for UA occur-
ring in the community.

Modelling
There are numerous mathematical and statistical methods
that can generate new estimates of incidence in the
Hospital data 
(H)

Laboratory data 
(L)

y

zw

x

Total infected 
(asymptomatic + symptomatic)

Total s

Figure 2 Illustration of a three source capture-recapture study. The ou
a given population in a given time period, the second square represents th
symptomatic cases attending healthcare. In this example, of all infected ind
data source (which in this example are the laboratory database, hospital da
the notification system). a represents the number of symptomatic cases a
remain undiagnosed or not notified (i.e. the underreported cases). x, y, w
w captured in two data sources and z cases captured in 3 data sources. Th
reported to the national level is: = cases in N + (cases in H (−w -x -z)) + (ca
population as well as calculating the predicted proportion
of UE occurring at several steps of the reporting chain,
which can then be used to generate country- and disease-
specific MFs. As well as using simulated data, these
methods often utilise data from national surveillance re-
cords, CBS, CRS and several other study designs and
therefore it is difficult to consider modelling as an inde-
pendent method for identifying UE (many studies use a
combination of methods, e.g. statistical modelling is often
used to analyse results of CBS).
Attack rates, that estimate the proportion infected (from

which cumulative incidences can be estimated and MFs
generated), are calculated using data from CBS or national
surveillance data (although these are still subject to UE),
(e.g. influenza [102,103]). Vaccine coverage, when below a
certain threshold and when the basic reproduction num-
ber is known for a pathogen, can be used to estimate the
number of susceptible individuals in the community and
therefore expected incidence (and hence MFs), (e.g. mea-
sles [104]). Scallan et al. [105] and Thomas et al. [106]
used statistical methods to ‘scale-up’ counts of laboratory-
confirmed cases to an estimated number of illnesses in the
United States and Canada respectively, therefore adjusting
for UE. Serological data can be modelled statistically to es-
timate incidence (e.g. HIV [107]) and past incidence of in-
fection calculated from the current prevalence of antibody
in a population using a catalytic model (e.g. hepatitis A
Notification 
data (N)

a

ymptomatic

Total symptomatic 
attending healthcare

termost square represents the total number of infections occurring in
e total symptomatic cases, and the innermost square represents all
ividuals attending healthcare, all cases - a will appear in at least one
tabase and notifications sent to the public health agency through
ttending healthcare that were not captured by any data source and
and z cases are recorded in more than one data source with x, y and
e true number of cases attending healthcare and that should be
ses in L (−w -y -z)) + a. Adapted from: [87].
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[108]). Decision tree models, (e.g. for Sexually Transmitted
Infections (STIs) [109], hepatitis A [110]), and similarly
probability models and pyramid reconstruction models
(e.g. food and water borne disease [9,33,58,85,111,112], in-
fluenza [19]) estimate the country- and pathogen-specific
probabilities of action at each incremental stage of the sur-
veillance pyramid (e.g. attending healthcare versus not,
submitting a sample versus not, reporting versus non-
reporting). Further modelling techniques include Bayesian
synthesis of multiple evidence sources that estimate the
‘true’ incidence of an infection at several steps of the sur-
veillance pyramid, as well as changes in contact patterns
and health-seeking behaviour (e.g. H1N1 influenza pan-
demic [113,114]). Simulation models, based on outcome
trees of disease progression are also tools that can estimate
expected incidence, (e.g. hepatitis B [115]).

Methods
An extensive literature review was conducted to identify
studies (of designs presented above) that estimate ascer-
tainment or reporting rates for salmonellosis and campy-
lobacteriosis in European Union Member States (MS),
plus European Free Trade Area (EFTA) countries Iceland,
Norway and Switzerland and all other OECD countries.
Articles were considered relevant if they: measured the
sensitivity of reporting or reported the rate of UA, UR or
UE; reported MFs, measured a new incidence or preva-
lence of infection from which a MF could be derived; or
used any alternative methodology to correct surveillance
or notification data. To identify appropriate studies, a lit-
erature review for each disease (salmonellosis and campy-
lobacteriosis) and each pathogen (Salmonella spp. and
Campylobacter spp.) was conducted in PubMed using the
search terms: burden, cost-of-illness, cost of disease, cost-
effectiv*, cost-analys*, cost-benefit, cost-utility, disability-
adjusted, mathematical model*, multiplication factor*,
multiplier*, outbreak*, prospective stud*, quality of life,
quality-adjusted, serological stud*, serological survey*, ser-
osurveillance, sero-surveillance, seroprevalence, statistical
model*, telephone (*denotes any ending to the search
term); linked by ‘OR’. The search was restricted to articles
written in English and to the years 1990–2011 since sur-
veillance systems, reporting protocols and epidemiological
patterns may have been different in the years preceding
1990, hence MFs would be less appropriate for adjusting
current surveillance and notification data.
Following identification of these studies, MFs were either

taken directly from the literature or derived where the pro-
portion of underestimated, under-ascertained, or underre-
ported cases was known (MF = 100/(percentage reported
or ascertained or estimated), Figure 1B). MFs for salmonel-
losis and campylobacteriosis were compared to gain an un-
derstanding of variation between and within countries
when using different methods to estimate UR and UA.
Results
MFs were found or derived for all European Union Mem-
ber States (MS) plus European Free Trade Area (EFTA)
countries Iceland, Norway and Switzerland and four other
OECD countries (USA, Canada, Australia and Japan) for
salmonellosis from 22 references, and similarly for campy-
lobacteriosis (excluding Croatia, Greece, Iceland, Latvia
and Portugal) from 18 references. Table 1 (salmonellosis)
and Table 2 (campylobacteriosis) present MFs for adjust-
ing surveillance data for UE in one step, and MFs for
adjusting for UA and UR in these countries. By multiply-
ing together one MF of UR and one MF of UA, this results
in one single MF of UE. MFs were found to vary widely
between study types, countries and diseases with MFs for
UE ranging from 0.4 (suggesting over-reporting) [75] in
Iceland to 2082.9 [76] in Portugal for salmonellosis and
from 0.4 [76] in Sweden and Finland to 39,000 [76]
in Bulgaria for campylobacteriosis. In countries with
mandatory notification of infection (for salmonellosis this
includes all EU countries other than Belgium, France,
Luxembourg and Spain which are voluntary, and the UK
which requires reporting of the pathogen rather than dis-
ease), reporting rates were expected to be higher (and
hence MFs lower). Unfortunately, there are too few MFs
of UR to verify this from these studies. The most common
study type for generating MFs of UE for both diseases
identified by the literature review was RTS which can pro-
vide comparable multipliers for several countries. Further-
more, most studies provide a single MF to adjust for UE
in one step, suggesting this is the most straight-forward
approach. Few studies (12 for salmonellosis and 10 for
campylobacteriosis) provide any measure of uncertainty
surrounding the MF. While age-stratified MFs are pre-
ferred since ascertainment and reporting are affected by
age; stratification into age bands was only found for UA of
salmonellosis (S.braenderup) in Japan in one study [48].
For individuals less than 10 years of age, the MF was lower
than for individuals over 10 years and hence the older age
group was ascertained less often. No study described sex-
specific stratification of MFs for either disease. Two stud-
ies stratified MFs by severity of clinical symptoms based
on duration of symptoms [33] and if there was blood in
stool samples [33,49]. Where duration of illness was
short, cases were less likely to seek healthcare leading to
higher UA and higher MFs. With bloody diarrhoea due
to Salmonella in USA, Voetsch et al. [49] estimated
higher ascertainment (lower MF) and lower overall under-
estimation compared to non-bloody diarrhoea. Few stud-
ies make a distinction between strain types. Where MFs of
UR were estimated from CRS (two studies of salmonel-
losis), a MF for each data source is listed showing the de-
gree of UR per data source which is consistent for both
studies. The United Kingdom and the Netherlands had
the most number of MFs of UE for both salmonellosis and
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campylobacteriosis. For each country, all studies were rea-
sonably consistent in terms of order of magnitude. This
may be due to the overlap of data sources used in the
studies. However, the highest MF estimates for both coun-
tries and each disease were estimated by the pyramid re-
construction model. These higher estimates of MFs may
represent the thorough nature of accounting for each in-
cremental step of the surveillance pyramid which could
lead to double-counting of cases.

Discussion
Here, we discuss the advantages and disadvantages of dif-
ferent methods for identifying UE in the surveillance pyra-
mid and compare MFs resulting from those methods. MFs
show considerable between-country and -disease variation
which may reflect true differences in reporting and ascer-
tainment rates. However, study design (which often de-
pends on the disease, data type, data quality and availability
of resources) and hence the method used to estimate UE
likely accounts for the presented within-country variability
of MFs. It remains difficult to select the most appropriate
study (and corresponding MFs) as there are limitations as-
sociated with each. CBS that are representative of the whole
population are often favoured for approximating UE, UA,
and UR but the quality of MFs derived depends highly on
the study design; CRS are very good at estimating UR in
the surveillance pyramid but some reported cases may re-
main undetected and UA is not considered; and RTS and
serological surveys also estimate UE effectively but the
many associated limitations must be realised. In addition,
an important limitation is the uncertainty that surrounds
estimates which is relevant to all study types. Many of the
studies from the literature review do not report uncertainty
for MFs which gives a false impression that we are sure that
these point estimates are correct. In fact, a great level of un-
certainty is expected [33]. Since the factors contributing to
UE are multiplicative (Figure 1B), they explode rapidly and
the resulting MF can be very large (this is clearly observed
in pyramid reconstruction studies which aim to account
and correct for UE at each incremental step of the surveil-
lance chain). Therefore, even small degrees of uncertainty
in measuring individual components of UE can lead to wide
ranges in incidence estimates and MFs. To estimate pre-
dictive intervals, uncertainty can be modelled by incorpor-
ating, for example, either uniform or pert probability
distributions (rather than fixed point estimates), and using
techniques such as Monte Carlo simulations [4,50,80,84].
One systematic way to decide on the best method for es-

timating UE or choosing MFs is to use the Delphi method
or expert consensus. In the next phase of the BCoDE-
project, internal ECDC experts with final input from the
consortium and other external experts will create lists of
the most appropriate country- and disease-specific MFs for
32 IDs. In general we assume that the most appropriate
MFs should be disease-, country-, age-, and sex-specific be-
cause underestimation rates are disproportionately distrib-
uted between diseases, countries with differing surveillance
systems and reporting procedures, and between demo-
graphic groups. While our literature review returned only
one result with age- or sex-stratification of MFs, there are
other studies that provide age- (at least for given age bands)
[12,21,34,116-119] and sex-specific [117,118] MFs for gen-
eral gastroenteritis and diarrhoea (i.e. unspecified patho-
gen). However, there remains a paucity of age- and sex-
specific MFs in the literature.
Where no MF exists, it is (under certain conditions)

possible to ‘borrow’ or extrapolate from a disease of simi-
lar epidemiology or from the same disease in a country
with a similar surveillance system, or likewise apply the
same MF to a group of diseases (as demonstrated by Mead
et al. [83]). However, it must be acknowledged that the
base value of “cases reported” (Figure 1A and B) that we
seek to adjust for UE by applying an appropriate MF, may
not always capture the same proportion of infections that
have occurred or provide comparable information of dis-
ease incidence estimates for different diseases or countries.
Therefore, borrowing MFs (particularly from different
countries and especially from different disease groups (e.g.
taking MFs for STIs and applying to gastroenteric disease
data)) is not a favoured method owing to the inherent het-
erogeneity of national surveillance systems in terms of
population covered, test sensitivity and specificity, the
source of data (physician, laboratory, hospital or other)
and surveillance type (whether compulsory versus volun-
tary reporting of positive results or cases, comprehensive
versus sentinel, active versus passive surveillance, case-
based versus aggregated reporting [120]).
Here we did not address UE in the mortality reporting

chain. Similar to the surveillance pyramid for morbidity
data, the tip of mortality pyramid represents the cases cor-
rectly reported. The wide base of the pyramid contains data
of all deaths including those that are ascertained and those
that are not. Whilst it is expected that in a European setting
under-ascertainment of deaths is rare (if not irrelevant),
underreporting or over-reporting of mortality events due to
certain diseases or conditions is not. The number of deaths
may be well reported, but there is considerable misclassifi-
cation of the cause of death. This misclassification may be
deliberate in countries without nationalised healthcare such
as the United States, where reimbursement by private in-
surance may be related to the ICD code used for the pri-
mary cause of death. Elsewhere, there may be other reasons
to misclassify the cause of death, such as government tar-
gets and pressure to reduce the number of deaths due to a
certain cause. In addition, often lacking are additional de-
tails relating to underlying conditions and sequelae that an
individual died with (e.g. secondary and tertiary causes) but
not necessarily of (i.e. the primary cause of death)
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[13,121,122]. For example, chronic conditions with infec-
tious causes (e.g. liver cirrhosis) are often not counted as se-
quelae deaths and therefore the surveillance system may
underestimate the long-term burden due to the infection
that led to the sequelae.

Conclusion
UE masks the true magnitude of disease incidence and re-
duces the efficiency of the notification system and surveil-
lance potential [123]. In some instances, such as BoD
estimates for the BCoDE-study and for comparing the im-
pact of diseases between countries, it is necessary to quan-
tify and adjust for UE. After correction for UE, preferably
by age and sex, surveillance and notification data become
a better estimate for evidence-based and comparable dis-
ease burden estimations. However, since adjusting for UE
results in higher disease burden estimates and can result
in diseases with differing ranks of public health import-
ance compared with unadjusted surveillance data; care
should be taken to clearly communicate both the need for
such adjustment and the methodologies applied to adjust
the raw data. The results presented here confirm that UR
and UA have a significant impact resulting in UE of surveil-
lance and notification data in our examples for salmonel-
losis and campylobacteriosis. To a varying extent, this is
also true for all other pathogens in the BCoDE-study. The
BCoDE-project is currently compiling and verifying esti-
mates of UE and MFs derived from extensive literature re-
views for 32 IDs. Here, we have presented several viable
approaches for estimating UE and MFs of salmonellosis
and campylobacteriosis although the best option will un-
doubtedly vary between countries.
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