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But that in the simple appreciation of a world not our own to define, that poised arctic landscape,
we might find some solace by discovering the ki-lin hidden within ourselves,

like a shaft of light.

- Barry Lopez -
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Chapter 1

The Arctic Ocean is subject to a substantial climate change [1], causing Arctic marine
ecosystems to exhibit particularly fast changes in the coming decades [2,3]. Sea ice loss and
an extended open water period within Arctic marine areas are expected to contribute to
increased human activities such as oil and gas (O&G) production, commercial fisheries and
tourism development [4,5]. This raises a global concern about Arctic marine oil pollution
[6,7] and its long-term impacts [8], based on experiences and environmental impacts from
previous oil spills in the Arctic or elsewhere [9,10]. Awareness is also reinforced by the vast
amounts of bunker fuel on board ships currently transiting International Maritime
Organization Arctic waters being operated on heavy fuel oil [11], salient difficulties during oil
spill response such as remoteness, seasonal darkness, stronger winds and currents, more
fragmented sea ice and a lack of effective oil spill response methods for icy conditions
[12,13]. Consequently, sustained and adequate long-term monitoring of the impacts of oil
spills on Arctic ecosystems and development of plans for mitigation before and after Arctic

oil spills should be implemented [14-16].

Current environmental risk assessment procedures contain uncertainties on the potential long-
term effects of oil spills and operational discharges of produced water in the Arctic [17].
Environmental risk assessment combines exposure assessment and chemical-specific hazard
data. Oil spills may pose an acute risk to the environment, with ecological consequences
being highly dependent on the type of oil, size of spill, environmental characteristics of the
habitat, selection and effectiveness of emergency response systems [16]. Risk assessment of
0&G and shipping activities also needs to include long-term effects of continuous exposure

to drilling waste and produced water [18].

Environmental impact assessment procedures should delineate oil pollution sources, transport
mechanisms, routes and duration of exposure to Arctic species or habitats prior to the
implementation of forecasting methods to predict O&G environmental impacts. Arctic
characteristics affecting the environmental fate and effects of oil related chemicals may result
in different exposure scenarios between Arctic and temperate species. Therefore,
environmental monitoring tools should rely on the identification of factors that are critical for
the exposure to oil related chemicals and development of sublethal effects in Arctic biota.
Such factors may be used to define acceptable environmental assessment criteria and

monitoring methods for the early detection of O&G environmental impacts in the Arctic.
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Chapter 1

For any species or group of species to be an effective indicator of O&G related chemicals, the

abovementioned factors should meet the following criteria:

1. TIts response is sensitive to changes in the chemical concentration;
Its response is specific and causally related to the chemical exposure;
Its response is adequate given the anticipated concentration of the chemical [19];

The species’ uptake/elimination of the chemical can be quantified,

wok » N

The toxic effects of the chemical can be measured/interpreted.

For the specific purpose of the thesis, biological indicators (bioindicators) are defined as
biological species which may be affected by the exposure to a given O&G target chemical at
different levels of biological organization and under realistic O&G exposure scenarios. In
addition, bioindicators may present different functional traits and habitat choices so that their
combined use may indicate different levels of stress for different ranges of environmental
conditions and/or exposure to an O&G chemical group. Since adaptations of Arctic marine
individuals to their environment underlie their sensitivity and vulnerability to O&G
chemicals, the genetic diversity and phenotypic plasticity of species traits influencing the
combined effect of natural stressors (e.g., ocean acidification) and O&G waste exposure
should be reflected by regional impact monitoring. This ensures that bioindicators of potential
pressures arising from O&G activities are identified, and that our understanding of how
certain ecological attributes increase resilience of Arctic marine ecosystems is improved and

used to develop oil spill restoration plans.

Chemical characterization and environmental fate of offshore oil and gas waste in the

Arctic with special emphasis on the Barents Sea region

Waste materials produced by offshore O&G activities that may be discharged into the ocean
are water-based drilling muds (WBM) and cuttings, synthetic-based mud (SBM) cuttings,
treated produced water (PW), treated sanitary and domestic waste, deck drainage, once-
through fire water and non-contact cooling water (Figure 1). WBM are formulated mixtures
of clays, natural and synthetic organic polymers, mineral weighting agents, and other
additives, all dissolved or suspended in freshwater, saltwater, or in brine (Table 1). The
composition of WBM may vary during drilling of a single well because different additives
may be required to drill different well sections through varying geological formations [20].
WBM cuttings that are discharged to the ocean tend to accumulate at seafloor level down-

stream from the discharge source at distances of about 100 m to > 1 km. SBM cuttings do not

11

Ariadna Szczybelski Thesis Headers.indd 11 @ 26-09-18 09:22:48



Chapter 1

disperse on contact with sea water and settle rapidly when discharged, mainly exposing the

(local) benthic ecosystem [21].

Turbine exhaust

Cuttings piles

Figure 1. Offshore O&G waste discharges and air emissions depiction.

Sewage water includes industrial household and sanitary sewage in compliance with MARPOL 73/78 Annex V.
Drains include ballast water, storm/rain water and other liquid waste in compliance with MARPOL 73/78 Annex
I, regulation 39. Produced water (PW), cutting piles (WBM attached to WBM cuttings and SBM cuttings, if
allowed) and displacement water discharges are in compliance with OSPAR Decision 2000/3. Emissions to air
shall be in compliance with the provisions of MARPOL 73/78 Annex VI. Shipping discharges to sea shall be in

compliance with the provisions of MARPOL 73/78 Annex [-V. Source: http://www.ospar.org/work-

areas/oic/chemicals

Table 1. Functional categories of additives used in WBM to improve drilling performance
and examples of chemical products as provided by the International Association of Oil and

Gas Producers [20].

Functional Category of
Additives

Examples

Weighting materials
Thinners

Filtrate reducers
Lost circulation

Shale control
Bactericides
Pipe-freeing agents
Corrosion inhibitors
Viscosifiers
Flocculants

pH control
Lubricants
Emulsifiers, surfactants
Defoamers

Calcium reducers
Temperature stability

barite, calcium carbonate, ilmenite or hematite

lignite, lignosulfonates, polymers

clay, lignite, polymers, starch

inert soluble solids (e.g., calcium carbonate, ground nut shells, graphite,
mica and cellulose fibres)

soluble salts (e.g., KCI), amines, glycols

glutaraldehyde, triazine disinfectants

water-based lubricants, enzymes, surfactants

amines, phosphates

clay, organic polymers

inorganic salts, acrylamide polymers

inorganic acids and bases (caustic soda)

water-based lubricants, glycols and beads

detergents, soaps, organic fatty acids

alcohols, silicones, aluminium stearate, alkyl phosphates
sodium carbonate, bicarbonate, polyphosphates

acrylic or sulfonated polymers, lignite, lignosulfonate

Ariadna Szczybelski Thesis Headers.indd 12
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Chapter 1

PW is a complex mixture of dissolved and particulate organic and inorganic chemicals

(Tables 2 and 3). Naturally occurring compounds that are dissolved or dispersed include
inorganic salts, metals, radioisotopes, and a wide variety of organic chemicals, mainly
polycyclic aromatic hydrocarbons (PAHs). Although these compounds may occur naturally,
local concentrations after a spill may exceed natural concentrations by several orders of
magnitude, creating a non-natural situation. Much of the petroleum hydrocarbons discharged
to the ocean in properly treated PW are dissolved low-molecular-weight (LMW) PAHs and
smaller amounts of saturated hydrocarbons. Because PW treatment is not always optimally
effective, treated PW usually still contains some dispersed oil which includes high-molecular-
weight (HMW), less soluble saturated and aromatic hydrocarbons. If PW is discharged to
shallow waters, some metals and HMW aromatic and saturated hydrocarbons may accumulate
in sediments near the PW source, with an increasing trend observed for compounds with a
relatively high octanol-water partitioning coefficient (Kow). In well-mixed waters, high
concentrations of saturated hydrocarbons and PAHs in sediments sometimes can be observed

as far as hundreds of meters from the PW source [14,22,23].

Table 2. Concentration of naturally occurring organic chemicals in produced water
worldwide as provided by Neff [24], and heavy metals and radioisotopes in produced

water from the Norwegian Continental Shelf as provided by Neff [24] and the @
Norwegian Radiation Protection Authority [25].

Natural chemical Treatment conc. (mg/L)
Total organic carbon <0.1 —>11,000
Total organic acids <0.001 —>10,000
Total saturated hydrocarbons 17—=30
Total benzene, toluene, ethylbenzene and xylenes (BTEX) 0.068 — 578
Total polycyclic aromatic hydrocarbons (PAH) 0.04—3.0
Total steranes/triterpanes 0.14—0.175
Ketones 1.0—2.0
Total phenols (primarily Co-Cs- phenols) 04—23
Metals (mainly Barium) 107,000 — 228,000 (ug/L)
Radioisotopes (mainly **Ra and ***Ra) n.d. — 567 (pCi/L)
n.d.: not detected.

13
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Chapter 1

Table 3. Summary of additives in offshore produced water provided by Zheng et al. [26].

Function Offshore chemical class Treatment conc. (ppm)
Amine imidazolines
Corrosion inhibitor (acid) Amine salts 25—100

Quaternary ammonium salts
Nitrogen heterocyclics

Corrosion inhibitor (oxygen) Ammonium bisulfite 5—15
Quaternary amine salt

Bactericide Amine acetate 10 —200
Gluteraldehyde

s Methanol n.a.

Hydrate inhibitor Ethylene glycol Y

Dehydration Triethylene glycol n.a.

Scale inhibitor Phosphate esters 3—10
Phosphonates
Oxyalkylated resins

Emulsion breaker Polyglycol esters 10 —200
Sulfonates

Solid removal Polyamine . <3
Quaternary polyamine

n.a.: not available.

Among all pollutants released during O&G drilling and production, alkylphenols (APs) and
PAHs are seen as potential causes of long-term biological effects [23,27-29] although there is
high variability in, for instance, PW composition between different fields and over drilling
time (Table 2). Prolonged O&G waste discharges could have a cumulative effect on
chronically exposed Arctic biota and their impacts could be particularly relevant for
ecosystem components vulnerable to oil spills, such as benthic systems [30,31], since they
mainly accumulate hydrocarbons from sediments to which persistent fractions of oil remain
adsorbed. Despite their relevance, long-term AP and PAH effects on benthic populations or
communities at concentrations found in PW effluents are basically unknown [32] and there

are scarce means to evaluate their long-term impacts on the marine environment [18,33].

Besides, the effects of long-term exposure of Arctic benthos to oil or O&G waste components
could be enhanced by increased primary productivity in seasonal ice regions where PAHs
may be absorbed by phytoplankton, which in turn serves as major food source for benthic
species [34-37]. Furthermore, exposure to oil or O&G waste may be aggravated by limited
protein function (e.g., enzymatic detoxification) of benthos due to a relatively low tolerance
of (sub-)Arctic temperatures (i.e., > 5 °C) in polar ectotherms [38,39]. Chronic impacts of
0&G waste discharge on Arctic benthic systems could eventually result in a reduction of the

productivity of the Arctic marine ecosystem since benthic systems are mainly responsible for
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Chapter 1

carbon and nutrient recycling [30] and they form an important food source for many top

predators.

Because of the important role of benthic communities within the Arctic marine ecosystem and
their susceptibility to O&G pollution, the scientific goals of the current thesis focused on the
Barents Sea region which is characterized by the highest benthic species diversity among the
different Arctic seas [30]. Major gaps on the physical and biological conditions of the Barents
Sea seabed currently prevent the integration of baseline knowledge about the benthic

ecosystem in O&G monitoring programmes and environmental impact assessment [40-42].

In the following sections, I will justify and underpin the selection of PAHs and model Arctic
benthic invertebrate species from the Svalbard inshore region as indicators for chemical and

biological pressures arising from O&G activities in the Barents Sea benthic system.
Polycyclic aromatic hydrocarbons as oil and gas target chemicals

PAHs are one of the main components of crude oil and can be classified into (1) LMW PAHs
which are highly toxic to aquatic organisms and highly volatile typically remaining in the
environment for hours to days following a spill, and (2) HMW PAHs which are less volatile
and degradable, and are associated with chronic effects in biota due to their persistence in the
environment [43]. PAHs have both natural and anthropogenic sources which overlap,
particularly for combustion, and processes such as diagenesis (i.e., alteration of sediments into
sedimentary rock) can modify sediment PAH distributions over time. In the Arctic Ocean,
relatively high atmospheric concentrations and increasing deposition of PAHs with increasing
latitude have been attributed to combustion of biomass and/or coal [44]. Therefore, the
environmental fate and effects of anthropogenic PAHs must be evaluated against a site-
specific background of natural PAHs and a broad range of hydrocarbon indicators needs to be

considered in order to define sources, transport and sedimentary persistence of PAHs [45].

Once released into the ocean, PAHs are subject to partitioning processes including adsorption,
where the hydrocarbon attaches to the surface of a solid or other interface, and absorption,
where the chemical partitions into an (a)biotic compartment [46]. Understanding the
distribution or partitioning of PAHs between the dissolved phase, aquatic particles and
sediment is crucial for the determination of fate and bioavailability of PAHs to marine biota,
as this will strongly affect the environmental fate of PAHs and mechanisms and magnitude of

exposure of aquatic organisms to PAHs [47,48]. Similarly, PAH accumulation in organisms
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will be affected by PAH desorption rates from particles in biota digestive tissues and

metabolic rates that degrade or eliminate PAHs.
Environmental fate of PAHs: sorption to sediment and bioavailability

The fate and persistence of petroleum in marine systems are controlled by physical, chemical
and biological properties and processes that subsequently modify petroleum impact. All these
properties and processes are driving the weathering of oil, which however also depends on
factors such as temperature, light conditions and water mixing by, for instance, wind. A key
factor of oil weathering is based on the viscosity of the oil mixture, which largely affects its
tendency to spread out on surfaces [49]. Since cold temperatures can increase the viscosity of
oil, the resulting spreading of oil under Arctic conditions may be lower than expected and so
are the evaporation of volatile components from oil [49,50] and from the water-
accommodated fraction of some fuel oils [S1]. This may delay oil weathering and
biodegradation [52] and increase PAH sorption affinity [46], particularly near river runoff
sources where alluviums of finely dispersed materials would sequestrate the suspended

fractions of oil.

Desorption rate constants of PAHs from sediments contaminated with petroleum are inversely
correlated with the logarithm of Kow of the PAH compound and directly correlated with its
aqueous solubility [53,54]. PAHs associated with dissolved organic matter (colloidal; DOC)
behave like dissolved PAHs, whereas PAHs associated with suspended organic matter will
usually settle. They readily desorb from DOC, striving at an equilibrium between water,
DOC, suspended and settled particles, defined by organic carbon normalised partition
coefficients (Koc). However, when PAHs remain adsorbed to sediment for long periods, their
desorption rate will decrease since prolonged contact time of PAHs with organic materials
may lead to increased Koc values over time [55]. This ‘ageing’ phenomenon effectively

decreases the bioavailability of adsorbed PAHs [48].

Assessment based on bioavailability is considered a useful tool for the risk evaluation of
contaminated sites. PAH bioavailability can be estimated from PAH bioaccumulation which
results from PAH uptake by an organism and subsequent chemical excretion after digestion
and metabolism. Uptake of hydrocarbons in target tissues (bioavailability) occurs from
sediments, suspended particulate matter, the water column, or through the diet, depending on
the trophic level and ecological lifestyle of the organism [56]. In general, bioaccumulation is

measured in order to (1) determine contaminant-specific bioavailability (for non-metabolised
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contaminants), (2) identify possible causative agent(s) of toxicity, (3) relate body residues to

predator-prey accumulation values (biomagnification factors) and (4) assess/predict effects of

chronic, low-level exposures [57].

Under environmentally realistic PAH exposure scenarios, dealing with the fourth objective
may seem compelling. Since PAHs exert toxic effects following metabolism, PAH body
residues in organisms with low metabolic rate such as cold stenothermal bivalves will mainly
reflect PAH bioavailability [58]. For organisms with a higher metabolic rate, measurement of
parent PAH compounds is difficult due to low concentrations, hence PAH metabolic products
need to be analysed to determine a relationship between bioaccumulation and toxicity.
However, toxicity from bioaccumulation will also depend on the prior history of organism
exposure and the differences in organism sensitivity. Thus, both bioaccumulation of PAHs
(and their derivatives) and toxic effects should be simultaneously reported in benthic
organisms exposed to PAHs in order to identify any likely tolerance mechanisms or

sensitivity under low PAH exposure level [59].
Arctic benthic invertebrates as oil and gas bioindicators

In coastal environments, where oil is most likely to strand and accumulate, local biota will be @
subject to long-term impacts at source point or in surrounding areas after oil remobilization.
In these coastal areas, or hydrodynamic systems, a causal link between an increase of PAHs
in suspended solids and higher PAH bioavailability is suggested due to frequent sediment
resuspension and ageing [60,61]. This process may be enhanced by the physical disturbance
of sediment and increased riverine input of terrestrial PAH sources within inshore distance to
land (<200 m). Freshwater drainage with terrigenous particles may, in addition, create steep
gradients of sedimentation and salinity [62] which generally underlie a shift from filter- to
(sub-)surface-deposit feeders within the benthic community. Allowing for the coexistence of
different functional groups along such small-scale gradients, a comprehensive understanding
of the influence of species traits on PAH uptake and selection of bioindicators may be

promoted.

Many polar benthic organisms typically display K strategies [63], such as reduced
development and lower resource thresholds. In low water energy zones, absence or temporary
drifting of larval stages and selective feeding mode would cause benthic invertebrates to be
constantly exposed to local PAH sources and their possible PAH uptake routes could be more

easily defined. Additionally, among true residents, ectotherms may show a high vulnerability
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to increasing temperatures with greater fluctuations in their abundances on an inter-annual
scale, depending on their recent recruitment [64]. Such ectotherms may be far more
vulnerable to cumulative, but relatively minor impacts causing local extinctions such as the

combined effect of rising temperatures, food shortage and oil spill incidents.
Validation of long-term PAH exposure indicators in Arctic benthic invertebrates

In the Arctic, development of offshore O&G has undergone extensive technological and
engineering advances that have enabled the industrial sector to operate safe and efficiently
from a human and economic perspective [65]. One important aspect derived from such
advances is the prioritization of early detection of environmental effects of anthropogenic
pollution sources, notably effects derived from release of compounds included in the List of
Substances/Preparations Used and Discharged Offshore that are Considered to Pose Little or
No Risk to the Environment (PLONOR) [66]. The PLONOR list encompasses compounds for
which an array of ecotoxicological properties has been evaluated according to the
Harmonized Offshore Chemical Notification Format (HOCNF) [67] and set against a suite of
validity criteria in order to ensure environmental risks are minimized during operational
discharges. In the Lofoten-Barents Sea region, the development of O&G resources is
permitted under a strict regulatory policy of zero discharge of oil-based mud (OBM) and
SBM cuttings [68,69], whereas most of the additives used in WBM are either PLONOR

substances or if non-PLONOR their use is restricted to emergency situations.

For the scientific community, there is one key question about current ecotoxicological data
validation in the Arctic, which is whether the actual parameters used in HOCNF classification
criteria need to be adjusted for this region. This question is motivated by the fact that low
temperatures and regional physiological adaptations in Arctic species may give a difference in
sensitivity to oil components of Arctic ecosystems when compared to non-Arctic systems. It
has been shown that in general, differences in sensitivity to oil or PW components between
Arctic and non-Arctic test species are small [70-72], the former ones including mainly boreal
species with either a planktonic or nektonic adult stage. However, factors such as O&G waste
discharge conditions, ecological seasonal variations or a delayed manifestation of toxicity in
polar environments as recently suggested [73], could play an important role in establishing

differences between the susceptibilities of both regional groups in the long term.

Parameters such as bioaccumulation and biotransformation are currently included in national

or regional biomonitoring programmes of the marine environment [74], and they have been

18

Ariadna Szczybelski Thesis Headers.indd 18 @ 26-09-18 09:22:50



Chapter 1

compared across a wide range of temperate aquatic systems and benthic species, enabling us

to make a read across between Arctic and temperate species. In this thesis, both parameters
are used as part of an evaluating approach for the identification of long-term PAH exposure
indicators in Arctic benthic species. In addition, the thesis evaluates the sensitivity of
behavioural indicators in benthic model species to reflect on their potential use for the

prediction of sublethal effects of oil from the perspective of Arctic benthic biota.

PAH bioaccumulation from sediment: biota-sediment accumulation factors (BSAFs) for

Arctic benthos

Bioconcentration of PAHs from water is directly proportional to their respective Kow value,
whereas bioaccumulation from sediments and food involves an intermediate step in which
PAHs desorb from the solid matrix and partition into the lipid tissues of the organism via the
aqueous gut content. Bioaccumulation models generally assume that (1) both uptake and
elimination routes are regulated by passive partitioning and will finally result in steady-state
conditions and that (2) there is no biological metabolism once the PAH is absorbed.
Bioaccumulation from ingestion has been neglected by traditional models such as the
Equilibrium Partitioning Theory (EPT) [75]. The EPT method assumes that organic chemicals
such as PAHs partition between the sediment organic carbon and biota lipid phase and that
there is an equilibrium. However, the use of EPT methodology and the validity of its
extrapolation to sediment-dwelling organisms have been questioned because of the large
variability in tissue PAH concentrations across species and environmental conditions
[56,76,77]. Hence, bioaccumulation processes are not solely explained by passive

partitioning.

In both filter- and deposit-feeding organisms, PAHs are mainly accumulated via food intake
as these chemicals are generally adsorbed on dissolved and particulate organic matter (OM).
Because of the high affinity of PAHs for (sediment) condensed carbon (e.g., black carbon;
BC) [78], there is an inverse relationship between the concentration of BC in sediments and
the bioavailability of PAHs in sediments to marine organisms [79]. Additionally, the relative
contribution of water, food and sediment PAH sources to the total body burden greatly varies
from one species to another [56,76,77,80]. Within the EPT context, the estimation of a PAH
compound concentration in a certain species may be obtained by multiplying its sediment
concentration by an empirically derived biota-sediment accumulation factor (BSAF) for that

same PAH, species and sediment quality/composition. In practical terms, the observed
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variability in PAH concentrations requires a broad interpretation since the bioavailability of

PAHs will be modified by the species behaviour and the composition of their sorbent.

The BSAF has been used as a metric to evaluate the bioaccumulation of contaminants from
sediment and has been compared across a wide range of aquatic ecosystems [56,80-83]. The
use of the BSAF concept assumes that the concentration of chemicals in organisms is a linear,
non-threshold function of the concentration in sediment. However, assumptions of steady-
state conditions and absence of metabolism may not always be suitable, particularly if food
sources are predominantly waterborne or if PAHs are effectively metabolised after summer
periods of intense foraging. In the Arctic, BSAFs for organic pollutants have been barely
reported for benthic biota under field or laboratory conditions [84,85], and have never been

reported for PAHs in benthic biota.

A PAH biotransformation approach: biomarkers of PAH exposure and pyrene metabolites

in Arctic benthos

Biomarkers of chemical exposure may be useful as estimators of chemical stress to monitor
trends in ecological impacts of O&G activities [86,87]. For instance, aromatic xenobiotics
may enhance the production of intracellular reactive oxygen species (ROS) through induction
of the cytochrome P450 system (CYP). CYP is a multigene family of haem-containing
enzymes, which catalyse a variety of oxidative reactions, including hydroxylation,
epoxidation, dealkylation, deamination, sulfoxidation, and desulfuration (i.e., Phase I). During
these reactions, the lipophilicity of the xenobiotic is lowered by the addition of a polar
functional moiety, which often makes the metabolite more hydrophilic and, in most cases,
ready for further conjugation and/or excretion. Metabolites produced in Phase I reactions can
be eliminated or covalently conjugated to various endogenous compounds (e.g., reduced
glutathione, glucuronic acid, sulfate) to further decrease their lipophilic properties. Such
reactions, commonly known as Phase 11, are catalysed either by glutathione transferases
(GSTs), uridine-diphosphate-glucuronosyl-transferases (UDPGTs), or sulfotransferases (STs),
usually yielding water-soluble products that can be readily excreted. Suites of biomarkers
have been successfully applied at low levels of biological organization in combination with
chemical body residues in fish and invertebrates [74,88,89]. However, the use of biomarkers
also has been criticized as a result of the lack of a clear ecological relevance [86] and of
difficulty in data interpretation due to the influence of confounding factors [90] or lack of

baseline values [91].
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The major trait that could enhance oxidative stress sensitivity in polar species is the elevated

unsaturation level in membrane lipids [92]. A higher percentage of the polyunsatured fatty
acid (PUFA) represents an important mechanism by which polar ectotherms maintain
biological membrane structural and functional properties against low temperature. Since
PUFAs are highly susceptible to ROS attack, and high unsaturation levels enhance the
velocity and propagation of lipid radical chain reactions, the difference in fatty acid
composition increases the vulnerability of polar organisms to oxidative stress. PAH
metabolites may, in addition, exert pro-oxidant effects through the redox cycle, a well-known
source of chemically-mediated ROS generation [93], while metabolites containing an epoxide
may be mutagenic and/or carcinogenic or even inhibit some CYP components [94]. From a
practical point of view, the analysis of PAH metabolites in polar benthos may facilitate the
definition of acceptable oxidative stress thresholds since metabolic responses may not rely on
a large variety of homeostatic controls and feedback mechanisms as in the case of changes in
enzymatic induction (i.e., gene expression and protein production), which ensures their

meaningful interpretation [95].

Behavioural response approach: avoidance of Distillate Marine grade A (DMA) oil-spiked
sediment @&

Active spatial avoidance (‘escape’) of contaminated sediment relates to the ability of an
organism to detect toxicants via olfaction or taste and to move to a lesser contaminated area
[96]. Such behaviour can be up to 1000 times more sensitive than conventional lethal
endpoints (e.g., LC50), and it may also potentially reflect changes at a population level [97].
Among benthic invertebrates, amphipods have been extensively used in avoidance assays [98-
101] since they are equipped with a sensory system and they form an important food source
for benthic fishes and other organisms. To date only few studies have addressed avoidance
behaviour of oil-contaminated sediment by benthic amphipods, all of which were restricted to

temperate marine or estuarine species such as Corophium volutator or Melita plumulosa.

In the Arctic, exposure to the water-soluble fraction (WSF) of oil revealed little mortality in
sea-ice amphipods (i.e., Gammarus wilkitzkii), although biomarker results indicated sublethal
effects after exposure to WSF [102]. However, oil toxicity in pelagic amphipods may be
quickly dampened due to considerable evaporation and dissolution of oil in the water column.
This may not be the case in the water-sediment interface where microbial degradation of oil

under Arctic conditions [103] may result in persistent and localised sediment oil sources.
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These may trigger an escape response in benthic amphipods, while their response to lethal
concentrations may be slower than avoidance as previously observed in amphipods exposed

to the water-accommodated fraction of oil [104,105].

Since heavy fuel oils are being gradually replaced with marine distillate fuel oils (e.g., DMA)
where increased marine traffic is expected [106] and the organic fraction of distillate fuels
might be able to persist sufficiently long to adsorb to sediment and cause toxicity on a similar
scale than heavier fuels [51,107], escape by Arctic benthic amphipods from oil-spiked
sediment could become a sensitive tool for the early detection of oil sublethal effects in
benthic communities [108,109]. So far, studies have been performed on the toxicity of diesel
in sediment to polar benthic species such as the ophiuroid Ophiura crassa [110] and the
amphipod Gammarus setosus [111], but their ability to avoid oil-contaminated sediment has
never been addressed under field or laboratory conditions. Integrating escape responses in oil
risk assessment for the Arctic may not only give an indication on benthic amphipods’ spatial
distribution, which is inversely related to sediment toxicity, but also on oil related adverse

effects from chronic exposure.
Aim and scope of the thesis

As described in the foregoing sections there are four main knowledge gaps presently
hampering our ability to monitor long-term impacts of O&G activities on Arctic benthic

ecosystems:

e BSAFs for organic pollutants have been barely reported for Arctic benthic biota, neither
evaluated as possible indicators of sediment PAH bioavailability.

e Biomarkers of exposure to organic pollution and their responsiveness to sediment
pollution sources have not been evaluated in Arctic benthos chronically exposed to PAHs.

e Biotransformation metabolites of PAHs and their persistence along sediment exposure
have not been evaluated in Arctic benthos chronically exposed to PAHs.

e Avoidance of DMA-spiked sediment and its potential as an oil impact assessment tool

have never been studied from the perspective of Arctic benthic biota.
Aim of thesis

The aim of this thesis is to develop candidate methods for the early identification of Arctic
bioindicators of O&G and shipping related chemical stress in Arctic coastal benthic systems.
The bioindicator potential of some Arctic benthic invertebrate species is evaluated by
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specifically measuring the species traits influence on their PAH uptake and PAH

biotransformation induction during PAH exposure. Species with either sessile or with reduced
mobility, different feeding mode, food selectivity and low dispersal capacity are used to
define a sensitivity range to PAHs and other stressors within our chosen taxa. From that
perspective, two of the most representative Barents Sea and Chukchi Sea bivalve species,
with differing feeding and reproduction traits, the filter feeder Astarte borealis (Schumacher,
1817) and the filter/deposit feeder Macoma calcarea (Gmelin, 1791) were selected as target
species in combination with a predator polychaete, Nephtys ciliata (O.F. Miiller, 1776) [112-
115].

Research questions:

Q1: Can PAH body residues or BSAFs be used as bioavailability indicators in Arctic coastal

benthic systems and which target species is most suitable to detect trends?

Q2: Can species traits explain differences in PAH bioaccumulation between Arctic benthic

invertebrates?

Q3: Does bioaccumulation of PAHs differ between Arctic and temperate benthic invertebrate

species with different traits, and can modelling assist in reading across between species?

Q4: What is the feasibility of using biomarkers of exposure to monitor PAH pollution in the

Arctic? Is the identification of biotransformation metabolites a better alternative?

Q5: Can behavioural tests like avoidance behaviour become a suitable monitoring tool for oil

impact assessment in the Arctic?

Q6: What are prospects and advantages of using Arctic benthic bioindicator species for

monitoring long-term impacts of O&G and other maritime activities in the Arctic?

The above research questions are answered through a combination of field and laboratory

research, and modelling.

To address Q1, PAHs, PCBs and HCB body residues were measured in the field in A.
borealis, M. calcarea and N. ciliata. Differences in body residues among two locations in
Kongsfjorden ecosystem (Svalbard, Norway), chemicals and species were assessed and BSAF
values were obtained. Whether the BSAF metric is useful as an indicator of PAH availability

in Arctic benthic invertebrates under field conditions is investigated in Chapter 2.
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To address Q2 and Q3, PAH body residues were measured and BSAF values were obtained
for the aforementioned Arctic invertebrates and two Atlantic counterpart species (i.e.,
Limecola balthica [Linnaeus, 1758] and Alitta virens [Sars, 1835]) under laboratory
conditions. PAH bioaccumulation and bioavailability were compared between both regional
groups and bioaccumulation was modelled in order to make BSAF reading across between
groups possible. Results from laboratory experiments and modelling exercises are discussed

in Chapter 3 and set against field bioaccumulation conclusions in Chapter 2.

To address Q4, the responsiveness of some biochemical biomarkers of exposure, namely
acyl-CoA oxidase (AOX) and glutathione S-transferase (GST), or acetylcholinesterase
(AChE) inhibition in the Arctic bivalve 4. borealis exposed to a PAH-contaminated sediment
in laboratory conditions were studied. Additionally, two biotransformation metabolites of the
model PAH pyrene (e.g., 1-hydroxypyrene [OHPyr] and pyrene-1-glucuronide [GluPyr])
were measured in Arctic (M. calcarea, N. ciliata) and temperate (L. balthica, A. virens)
bivalves and polychaetes exposed to the same sediment and differing (Arctic vs temperate)
laboratory conditions. Both groups’ PAH biotransformation capacity and estimated chronic

toxicity derived from PAH metabolites bioaccumulation are discussed in Chapter 4.

To address QS, short-term avoidance by the temperate freshwater amphipod Gammarus pulex
(Linnaeus, 1758) and temperate marine benthic amphipod Gammarus locusta (Linnaeus,
1758) to DMA-spiked sediment was studied and set against results from the available
literature in Chapter 5. How and to what extent avoidance may affect the long-term
performance of the amphipods and how the response of the Arctic benthic amphipods may
differ from their temperate counterparts are discussed in Chapter 6, based on available

literature on oil acute toxicity in Arctic sea-ice and benthic amphipods.

Lastly, motivated by Q6, a synthesis is provided in Chapter 6 which discusses how
physiological and ecological traits may render Arctic coastal benthic species particularly
vulnerable to chronic exposure to O&G related chemicals and how we can identify those at an
early stage during O&G production as part of existing biomonitoring programmes.
Incorporating sublethal effects and long-term impacts of O&G waste on Arctic benthic
systems into biomonitoring and risk assessment procedures will help to determine the odds of
oil spill and O&G impacts on Arctic marine ecosystems and thus, improve environmental

assessment and restoration planning.
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Abstract

The predicted expansion of oil and gas (O&G) activities in the Arctic urges for a better
understanding of impacts of these activities in this region. Here we investigated the influence
of location, feeding strategy and animal size on the bioaccumulation of polycyclic aromatic
hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and hexachlorobenzene (HCB) by
three Arctic benthic species in Kongsfjorden (Svalbard, Norway). No toxicity was expected
based on biota PAH critical body residues. Biota PCB levels were mainly below limit of
detection, whereas samples were moderately polluted by HCB. PAH concentrations in biota
and biota-sediment accumulation factors (BSAFs) were generally higher in
Blomstrandhalveya than in Ny-Alesund, which was explained by a higher abundance of black
carbon in Ny-Alesund harbour. BSAFs differed significantly among species and stations. We
conclude that contaminant body residues are a less variable and more straightforward

monitoring parameter than sediment concentrations or BSAFs in Arctic benthos.
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1. Introduction

The Arctic region is undergoing an unprecedented change, with global rising temperatures 2
causing an annual summer retreat of sea ice and changes to for instance, seasonal weather

patterns and even ecosystems [116,117]. The retreat of sea ice will allow expansion of oil and

gas (O&QG) activities in the next decades, posing possible impacts on the Arctic ecosystem

[14]. Besides O&G activities, changes in climatic parameters as such may affect contaminant

transport to and cycling in the Arctic. Furthermore, primary productivity and food web

energetics may be affected and thus the trophic transfer of contaminants. Besides allowing

possible expansion of O&G activities, retreat of ice also opens alternative commercial

shipping routes, with associated anthropogenic activities and risk of maritime accidents.

It has been claimed that baseline information on effects of O&G activities on the Arctic
ecosystem or ecosystem components is still inadequate or unavailable [72]. Further research
on linking effects in organisms to exposure to O&G related contaminants is therefore
essential. In this context, identifying chemical (e.g., petroleum marker compounds like
petrogenic PAHSs), biological indicators for cumulative effects of O&G activities that can be
applied across the Arctic is highly relevant. Petroleum hydrocarbons are generally considered
to be one of the main pollutants related to O&G activities. Although anthropogenic inputs of
PAHs are only a small proportion of total hydrocarbon burden in the Arctic environment
[118], they can create substantial local pollution [119]. Several studies suggest that
atmospheric transport of polycyclic aromatic hydrocarbons (PAHs) has only a minor
influence on sedimentary PAH distributions in the Arctic Ocean [45,120]. However,
petrogenic and pyrogenic PAHs have been identified as an emerging concern in the Arctic
[121] and there is little information on PAH bioaccumulation in Arctic benthic species [122].
Since the hydrophobicity of PAHs may promote their adsorption to settling organic matter
(OM), marine sediments and benthic systems may act first as a sink and ultimately as a

secondary source of PAHs.

Besides PAHs, legacy persistent organic pollutants (POPs) like polychlorinated biphenyls
(PCBs), are still ubiquitous in Arctic regions. Local sources are mainly found in the form of
secondary sources after, for instance, breakdown and decommission of equipment and
demolishing of buildings, although long range atmospheric transport also greatly contributes
to the general supply. Contaminants deposited in polar regions typically become mobile
during the summer months as glaciers, sea ice and snow melting may introduce POPs into the
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marine system [123,124]. Input of these contaminants may directly impact the pelagic system
when taken up by algae and zooplankton [125,126], and indirectly the benthic communities
due to a strong pelagic-benthic coupling in the Arctic [127]. PCBs are persistent and
hydrophobic organochlorine contaminants with a wide range of biological effects in chronic
exposed biota. This makes them a suitable chemical group for environmental monitoring in

general.

Hexachlorobenzene (HCB) is another chemical that is known for its persistence and ability to
being transported to the cold polar regions [128]. Potential sources of HCB to the marine
ecosystem may comprise by-products and waste such as solid and liquid residues, solid waste,

oils and wastewater.

Coal, crude oil and atmospheric dust have been identified as possible PAH sources in
sediment samples of Svalbard [129]. PAH patterns in sediment samples showed
predominance of petrogenic PAHs (20 — 60% XPAH) and Svalbard coal was identified in all
sediment sampling stations [129]. Kongsfjorden is a relatively pristine fjord, as direct
anthropogenic impact on the marine system at local scales is generally much lower in
Svalbard than along the Norwegian coast and in European waters [130]. Strict environmental
policy has resulted in a limited contamination of the Kongsfjorden environment [131],
although accidental spills or chronic impacts from local anthropogenic activities still may

occur.

Arctic benthic species can be applied as relevant and sensitive bioindicators for the impact
assessment of O&G activities in the Arctic [122,132]. Markert et al. [133] defined a
bioindicator as an “organism (or a part of an organism or a community of organisms) that
contains information on the quality of the environment (or a part of the environment)”. Arctic
benthic systems are characterised by a high trophic diversity, relatively long life-span, and
sedentary lifestyles of the species [134]. This makes them well suited for studying spatial but
also temporal variability of O&G related pollution. Omnivore strategies are common among
many benthic species from Arctic shallow benthic communities such as scavenging
amphipods [135] making them resilient to changes in seasonal conditions which results in
little change in food web structure through the year [136]. Benthic invertebrates are an
important food source for higher trophic levels in the Arctic such as benthic fishes, bottom-
feeding seals (e.g., bearded seals, walruses) and birds (such as the eider duck) [137,138]. The

accumulation and effects of contaminants in benthic species depends on both biological traits

28

Ariadna Szczybelski Thesis Headers.indd 28 @ 26-09-18 09:22:52



Chapter 2

such as diet, habitat preference and longevity [56], and sediment characteristics such as grain

size and organic carbon content [80]. This results in differences in bioaccumulation potential

among benthic invertebrate species, which may be further enhanced by differences in their 2
biotransformation capacity of contaminants [139]. Some information is available on

contaminant levels in Arctic benthic species [140,141], however effects of contaminants in

Arctic invertebrates are still poorly understood [142].

The biota-sediment accumulation factor (BSAF) has been used as a metric to assess the
bioaccumulation of contaminants in sediment and has been compared across a wide range of
aquatic ecosystems [80-82]. Only a few examples of BSAFs for Arctic species are available.
BSAFs are reported for PCBs in (sub-)Arctic shorthorn sculpins [84] and for volatile
siloxanes in Svalbard Atlantic cods and shorthorn sculpins [85]. We are aware of only one
study reporting BSAFs for Arctic benthic invertebrates. PCB BSAFs have been published for

Astarte sp. and Nephtys incisa from an Atlantic temperate region [143].

Aim of the present study was to provide a more systematic evaluation of bioaccumulation of
PAHSs, PCBs and HCB by three Arctic benthic species. This includes assessing differences
between species, size classes within species, contaminant groups and sampling stations. In
this study we explore for the first time to what extent the BSAF metric is useful as an
indicator for PAH, PCB and HCB accumulation in Arctic benthic invertebrate species. The
results will be interpreted in light of the usefulness of such metric for assessment of potential

impact of future O&G activities in the Arctic.

Biota was collected in Kongsfjorden (Svalbard, Norway). Three benthic species (4starte
borealis, Macoma calcarea and Nephtys ciliata) were selected based on their feeding habits,
sessility and relative abundance or Valuable Ecosystem Component (VEC) condition (i.e.,

species that are specifically abundant at ecologically relevant habitats) [144].

Results of this study show the bioaccumulation potential of PAHs, PCBs and HCB in Arctic
benthic species in the field and are used to select the most relevant benthic species and tools
for monitoring organic contaminants in Arctic sediment.
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2. Materials and Methods

2.1. Study sites

Sediment was collected in an (sub-)Arctic fjord (Kongsfjorden Bay, Svalbard) and an
offshore region (Barents Sea) (Figures 1A-1B). The Svalbard inshore and Barents Sea study
areas were located between 71° and 79° latitude (Table S3) along which the waters are
influenced by the West Spitsbergen Current (WSC). Barents Sea sampling stations depth
ranged 110 to 320 m. For a general description of PAH levels in the W Barents Sea the reader

is referred to Boitsov et al. [118].

Kongsfjorden ecosystem is a high-latitude (sub-)Arctic fjord (79°N, 12°E), but the waters are
influenced by both the Atlantic water masses of the WSC as well as the Arctic-type coastal
waters, and additionally glacial input of melt water [145]. Depths in the outer basin average
200 to 300 m, whereas the inner basin is considerably shallower (average depth 50 — 60 m).
Muds dominate the subtidal sediments throughout the fjord. Kongsfjorden inner and outer
basins differ with respect to differences in their deposition rates, which are much higher in the

inner basin, and differences in bioturbatory activity by infaunal organisms distribution [131].

Kongsfjorden shallow benthic macrofauna distribution and abundance are influenced by
sediment characteristics such as grain size, water currents, as well as by different carbon
sources such as fresh settling OM, reworked settling OM, microphytobenthos and terrestrial
OM [127,136,141,146]. Two faunal communities can be distinguished in the Kongsfjorden
ecosystem according to the frequency of species occurrence, and to several indices of
community fidelity of each species in each community [147]. The Glacial Bay community
(inner basin) is dominated by small mobile bivalves (e.g., Yoldiella solidula) while the Outer
Basin community is dominated by larger, often less mobile, mostly tubiculous polychaetes

(e.g., Pectinaria hyperborea).

2.2. Collection of field samples

Sampling of sediment and biota in Kongsfjorden was performed at a locally impacted harbour
station (Ny-Alesund) [148,149] and two reference stations (Blomstrandhalveya and Kapp
Guissez) (Figure 1C). Sampling took place outside the protected areas of Kongsfjorden on
board of research vessel MS Teisten (Kings Bay AS, Ny-Alesund) between 15 and 19 July

2013 and within the Outer Basin community distribution area as defined by Wtodarska-
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Kowalczuk and Pearson [147]. Additionally, sediment samples were collected at five stations
in the West Barents Sea on board of the R/V Lance (Norwegian Polar Institute, Tromse)
between 3 and 10 October 2013 (Table S3). Sediment samples consisted of soft bottom 2
substrates and were collected using a Van Veen grab (0.1 m?). Biota samples were collected
at Ny-Alesund and Blomstrandhalveya using either a Van Veen grab, or a small dredge.
Three Arctic marine benthic invertebrate species with different feeding behaviours were
collected: A. borealis (Schumacher, 1817) (mollusc; suspension feeder), M. calcarea
(Gmelin, 1791) (mollusc; deposit and suspension feeder), and N. ciliata (O.F. Miiller, 1776)
(polychaete; omnivore). Sediment samples were preserved in 250 mL-glass jars at -20 °C
until analysis. The organisms were allowed to depurate for 24 h in clean sea water from the
fjord before dissection. Animals were weighed, measured, dissected and pooled by size class
(Table S2). Size classes were defined such that each class had sufficient numbers of
individuals to allow statistical testing. The soft tissue of bivalves was removed from the shell
and samples were pooled in groups of 5 to 12 individuals before freezing at -20 °C. Sediment
and biota samples were all shipped frozen in dry-ice to Wageningen University (Wageningen,

the Netherlands) for chemical analysis.

2.3. Chemical analysis

Chemical analysis was described before [150]. The following PAHs and POPs were analysed:
Phenanthrene (PHE), Anthracene (ANT), Fluoranthene (FLT), Pyrene (PYR),
Benz(a)anthracene (BaA), Chrysene (CHR), Benzo(e)pyrene (BeP), Benzo(b)fluoranthene
(BbF), Benzo(k)fluoranthene (BkF), Benzo(a)pyrene (BaP), Indeno(1,2,3-cd)pyrene
(Ind123P), Dibenz(a,h)anthracene (dBahA), Benzo(ghi)perylene (BghiP), hexachlorobenzene
(HCB), PCB-18, -20, -28, -29, -31, -44, -52, -101, -105, -118, -138, -153, -170, -180, -194, -
204 and -209.

For details on extraction, clean-up and instrumental analysis see the Supporting Information
(SI). In short: sediment and biota samples were Soxhlet-extracted with hexane/acetone.
Extracts were cleaned over AlO3 (PAH), or AlxOs/silica (HCB and PCBs) and analysed using
HPLC-UV and GC-ECD, respectively. Recoveries were 53 to 77% (PAHs in biota), 66 to
79% (HCB and PCBs in biota), 57 to 67% (PAHs in sediment) and 79 to 103% (HCB and
PCBs in sediment). Besides recoveries, numerous blanks were used. All data were corrected

for the resulting values.
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Subsamples of each sediment sample were analysed for weight percentages (wt. %) of OM
content, measured as loss on ignition (550 °C, 3 h). Biota lipids were extracted with

chloroform:methanol:water and quantified gravimetrically.

2.4. Data analyses

Lipid-normalised biota concentrations were calculated. BSAFs were calculated as
(Corg/tiip)/(Csed/fsom) with Corg being the chemical concentration in the organism in wet weight
(wet wt.; ng/kg), Csed the chemical concentration in sediment in dry weight (dry wt.; ng/kg),
fiip the fraction of lipids in the organism based on wet wt., and fsom the fraction of sediment
organic matter (SOM) based on dry wt. BSAFs of a specific compound were calculated
provided that there were at least three detects (i.e., >LOD) for the same compound in
sediment samples. Only those compounds for which > 90% BSAF values were above zero in
both stations were included in the statistical analysis. Data were checked for normality with
Q-Q plots and Shapiro-Wilk test and equality of variances with Levene’s test. Lipid-
normalised biota concentrations and BSAFs were tested for location and size effect with the
Mann-Whitney U test and Kruskal-Wallis test, respectively for each PAH and PCB
compound as well as for HCB and the sum of PAHs (£13PAH) and 7 PCBs (£/PCB).
Significance level of an overall statistical comparison was set at p < 0.05, while for pairwise
comparisons a Bonferroni correction was applied. All statistical calculations were performed

using SPSS version 22.

PAH diagnostic ratios were applied to assess emission sources of PAHs in sediment. Sources
can be pyrogenic (originated from combustion), petrogenic (originated from oil) or a
combination of these. It has been shown that PAH isomers with masses 202 (e.g., FLT, PYR)
and 276 (e.g., BghiP, Ind123P) have the greatest range in stability of PAHs, thus they are
good indicators of petroleum vs combustion sources [120,151]. PAH ratios FLT/(FLT+PYR)
and Ind123P/(Ind123P+BghiP) were calculated. A FLT/(FLT+PYR) ratio of < 0.4, 0.4 — 0.5
and > 0.5 points out to petrogenic sources, fuel combustion or grass/wood/coal combustion,
respectively. A Ind123P/(Ind123P+BghiP) ratio of < 0.5 or > 0.5 points out to fuel
combustion or grass/wood/coal combustion, respectively. However, this relationship is not

universal and interpretation of this measure should only be used indicatively.

Sediment (based on dry wt.) and biota (based on lipid wt.) PAH and PCB concentrations were
evaluated based on Environmental Quality Standards (EQSs) established by the Norwegian

32

Ariadna Szczybelski Thesis Headers.indd 32 @ 26-09-18 09:22:53



Chapter 2

Environment Agency [152], Environmental Assessment Criteria (EACs) established by the
OSPAR Commission [153] and Critical Body Residues (CBRs) established by the USEPA

[154]. )

Concentrations below the EACs are considered to present no significant risk to the
environment, and to that extent may be considered as being related to the EQSs applied to
concentrations of contaminants in water [155]. CBRs established by the USEPA are based on

the target lipid model suggested by Di Toro et al. [156].

3. Results and Discussion

3.1. Concentrations of PAHs, PCBs and HCB in sediment

PAHs in sediment. For Kongsfjorden samples, concentrations of £;3PAH varied between 12
and 2315 pg/kg dry wt. (geometric mean 139 pg/kg dry wt.), whereas for Barents Sea
samples, this range was between 39 and 4270 ng/kg dry wt. (geometric mean 823 pg/kg dry
wt.) (Table S4). Ny-Alesund sediments were contaminated quite uniformly with ;3PAH
concentrations ranging from 1815 to 2315 pg/kg dry wt. (geometric mean 2011 pg/kg dry
wt.). Towards the northern fjord shelf (Blomstrandhalveya) and the inlet from Kongsfjorden
to Krossfjorden (Kapp Guissez), PAH levels decreased. In the Barents Sea, significant
differences were found for PHE and BeP among distant stations (e.g., SE Edgeoya vs Snehvit,
Figures 1A-1B). This may indicate differences in deposition, the presence of local sources
such as natural seepages of oil or other organic fossils, or differences in SOM content. No
significant differences were found among stations relatively close to each other (e.g., SE
Edgeoya S2-S4) or among distant stations located within the NW Barents Sea study area (e.g.,
E Kong Karls Land vs SE Edgeoya).

Sediment PAH diagnostic ratios. Based on PAH ratios, sediment PAHs seemed to originate
from combustion of grass, wood, coal or petroleum (Barents Sea, Ny-Alesund), from
combustion of grass, wood and coal (Kapp Guissez), and from combustion of grass, wood and
coal or from petroleum (Blomstrandhalveya) (Table 1). In Ny-Alesund sediments,
uncombusted coal also is relevant. After all, PAHs from coal are ubiquitous in the Svalbard
environment where extensive coal mining was carried out by Kings Bay in Ny-Alesund until
1962 [157]. In a study of surface sediment collected between the Barents and Kara Sea

shelves, the highest pyrogenic PAH levels (sum of 4- to 6-ring hydrocarbons, perylene
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excluded) were found in sediments from Kola, the Pechenga Bays and Svalbard inshore
[129]. Highest pyrogenic PAH levels in Barents Sea and Kongsfjorden were reached in
sediments from station 2 (SE Edgeaya) and 8 (Kapp Guissez) (Table 1).

Table 1. Sediment parent PAH diagnostic ratios.

Barents Sea Kongsfjorden
(October 2013) (July 2013)
PAH ratio S1 S2 S3 sS4 S5 S6 ST S8

Min 043 0.53 045 044 000 063 031 048
B) © B B A © &) @B
Max 047 0.57 048 049 052 065 035 0.55
B © ® B © © @& (©
Min 080 0.82 0.77 0.79 081 034 021 0.83
© © © © © @B B (©
Max 083 085 0.79 080 087 043 079 086
© © © © © B © (©

(A) Petrogenic sources; (B) Fuel combustion sources; (C) Grass/wood/coal combustion sources.

FLT/(FLT+PYR)

Ind123P/(Ind123P+BghiP)

Sediment Quality Assessment based on PAH concentrations. Effect Range (ER) values were
established as sediment quality guidelines to be used to predict adverse biological effects on
marine organisms [158]. ERL (ER lower tenth percentile) values are available for 9 individual
PAHs (PHE, ANT, FLT, PYR, BaA, CHR, BaP, Ind123P and BghiP) below which adverse
effects on organisms are rarely observed. An ERL in sediment for the sum of PAHs (2990
ng/kg dry wt.) was calculated as the sum of the 9 PAH ERLs. The geometric means of the
sum of 9 PAHs in sediment samples from our study (Barents Sea and Kongsfjorden,
respectively) were 32 to 39 times lower than the 9 PAH ERL. However, in almost all Barents
Sea (S2-S4) and all Ny-Alesund (S6) samples PHE concentrations were above its individual
ERL value (i.e., 240 pg/kg dry wt.). Additionally, FLT, BbF, dBahA and Ind123P
concentrations in some Barents Sea samples (stations S3-S4, Figure 1A) were within the
interval of acute effects for short term exposure (Class V) established by the Norwegian
Environment Agency [152]. In some cases (station S4), PYR concentrations were even within
the interval of severe toxic effects (> 140 pg/kg dry wt., Class V) established by this same

institution.
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Figure 1. A: Barents Sea (S1-S4) and Kongsfjorden (S6-S8) sampling stations (Basemap ©
Norwegian Polar Institute). B: Snehvit sampling station (S5) (MAREANO mapping ©
Institute of Marine Research).

PCBs in sediment. For Kongsfjorden samples, 27PCB concentrations varied between 0.00002
and 0.13 pg/kg dry wt. (geometric mean 0.001 pg/kg dry wt.), whereas for Barents Sea
samples this range was between below limit of detection and 0.04 pg/kg dry wt. (geometric
mean below limit of detection) (Table S5). Highest concentrations of Z;PCB were detected in
Ny-Alesund sediments where concentrations varied between 0.002 and 0.13 pg/kg dry wt.
(geometric mean 0.01 pg/kg dry wt.). Significant differences were found between Ny-
Alesund and Blomstrandhalveya station for PCB-18, -105, -118, -138 and -155 (Mann-
Whitney U test, p < 0.05). PCB concentrations in Kongsfjorden sediment were within the
range of earlier reported PCB concentrations in Kongsfjorden sediment [149]. In other
Svalbard fjords, 27PCB sediment concentrations of 0.74 to 5.41 pg/kg dry wt. in Barentsburg
(Gronfjorden) and 1.8 to 20.2 pg/kg dry wt. in Pyramiden (Billefjorden) were reported in
2008, showing 6 to 14 orders of magnitude higher concentrations than in Ny-Alesund samples
included in our study [159,160]. PCB-138 and PCB-153 made up 60% of £7PCB in some Ny-
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Alesund sediment samples and 53% of £;PCB in Barentsburg sediment samples in 2008 [159]
which may point to different local sources [140,161,162].

Redingérpy

e
3 & i‘ E \
glpiortende Jullbreen, S \ o
= o mi. th\'f
@‘ U. Sve j

Krossfj ofFIpE

Snmrven

Kongsbreen
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Figure 1. C: Kongsfjorden sampling stations (S6-S8). From north to south: Kapp Guissez
(S8), Blomstrandhalveya (S7) and Ny-Alesund (S6) harbour (Basemap © Norwegian Polar
Institute).

=

HCB in sediment. HCB concentrations in Kongsfjorden samples were between below limit of
detection and 0.01 pg/kg dry wt., whereas concentrations of the Barents Sea sediment samples
varied between below limit of detection and 0.37 pg/kg dry wt. (Table S5). For Kongsfjorden
and Barents Sea samples, significant differences were found between Ny-Alesund and
Blomstrandhalveya station (Kruskal-Wallis test, p = 0.037) as well as between SE Edgeoya
(S3) sediments where HCB concentrations ranged 0.17 to 0.37 pg/kg dry wt. and Snehvit (S5)
sediments where HCB concentrations were < 0.00003 pg/kg dry wt. (Kruskal-Wallis test, p =
0.037).
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3.2. Sediment organic matter content

For Kongsfjorden, SOM percentages varied between 3.7% in Kapp Guissez and 6.3% in Ny-
Alesund, and for the Barents Sea samples between 4.9% in E Kong Karls Land and 9.1% in 2
SE Edgeoya (S2) (Table S4).

3.3. Concentrations of PAHs, PCBs and HCB in biota

3.3.1. Polycyclic aromatic hydrocarbons

PAH concentrations in biota. Among species and stations, 13PAH concentrations in benthic
invertebrates of Kongsfjorden varied between 27 and 9185 pg/kg lipid wt. (geometric mean
729 pg/ke lipid wt.) (Table S9). Lowest X13PAH concentrations were found in 4. borealis at
the Ny-Alesund sampling station, whereas highest X13PAH concentrations were observed in
N. ciliata samples at Blomstrandhalveya (Figure 2). In general the highest concentrations in
A. borealis and N. ciliata were found in Blomstrandhalveya samples, whereas concentrations
in M. calcarea samples did not differ much between stations. In our study, A. borealis
specimens (Ny-Alesund) were mainly exposed to both petroleum and coal combustion-
derived PAH sources in the field based on the agreement between mean PAH ratios
(FLT/[FLT+PYR] and Ind123P/[Ind123P+BghiP]) calculated for both Ny-Alesund bivalves
(0.49/0.52) and sediment (0.64/0.38) samples [163,164].

37

Ariadna Szczybelski Thesis Headers.indd 37 @ 26-09-18 09:22:55



Chapter 2
Station
M Ny-Alesund
10000—) [ Blomstrandhalveya
*
8000
3
o
o0
=
= 6000
5 o
Q:’ [0}
A}
4000
2000 i ! i l
0 ‘ T T - T
Astarte borealis Macoma calcarea Nephtys ciliata

Figure 2. X13PAH concentrations (pg/kg lipid wt.) in benthic invertebrates of Kongsfjorden.

PAH Critical Body Residues. To assess potential effects resulting from PAH bioaccumulation,
the measured concentrations can be compared to USEPA CBR levels. Hansen et al. [154]
calculated a X13PAH total lipid LC50 body burden (96 h) for N. arenaceodentata (polychaeta)
and for L. stagnalis (gastropoda) as 280,000 and 330,000 pg/g lipid wt. (using a Z13PAH Wn,
(molar weight) = 3058 pg/umol). This is a factor of 30,500 to 65,500 times higher than the
mean X13PAH lipid-normalised concentrations found in any of our species

(Blomstrandhalveya).

Hwang et al. [165] found a CBR of X,4PAH for lysosomal destabilization (at least 50% of
destabilized cells) of 2100 pg/kg dry wt. in eastern oysters (C. virginica). Assuming a 20%
and 12% dry wt. (based on soft tissue wet wt.) in 4. borealis [166] and in M. calcarea [167],
respectively, the maximum X13PAH values detected in Blomstrandhalveya 4. borealis and M.
calcarea specimens are 3 to 8 times lower (258 and 620 pg/kg dry wt., respectively) than the

>24PAH CBR calculated by Hwang et al. [165].
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Based on EACs for PAHs established in mussels and oysters [153], and assuming 20% dry
wt. in A. borealis, mean concentrations of PHE, FLT and PYR in A. borealis

Blomstrandhalveya specimens were 22, 6 and 2 times lower than the corresponding EAC. 2

Liu et al. [168] observed the induction of aryl hydrocarbon hydroxylase (AHH) and 7-
ethoxyresorufin O-deethylase (EROD) enzymatic activities in R. philippinarum individuals
with internal BaP concentrations of approximately 2.02 pg/g dry wt. in the digestive gland.
Assuming 20% and 12% dry wt. (based on soft tissue wet wt.) in 4. borealis and M. calcarea,
respectively, and accepting that a great proportion of BaP should be accumulated in the
digestive gland of bivalves [169,170], then the maximum BaP concentrations detected in A.
borealis (Blomstrandhalveya) and M. calcarea (Ny-Alesund) would be 108 to 465 times
lower (0.02 and 0.004 pg/g dry wt., respectively) than the same concentration observed by
Liu et al. [168].

In summary, no potential toxicity of Zi3PAH to 4. borealis, M. calcarea or N. ciliata
Blomstrandhalveya populations was indicated according to three CBRs mentioned.
Biotransformation enzymatic activity might be also negligible in the case of bivalves,

according to the results obtained by Liu et al. [168] for R. philippinarum.

Differences in PAH concentrations among stations. Several factors were identified that can
explain differences in PAH bioaccumulation between Ny-Alesund (NY) and
Blomstrandhalveya (BL). A summary of factors in relation to ecological processes is
provided as Figure 3, and in the discussion below we refer to these factors and processes as
NY-x and BL-y, where x and y correspond to the numbers as indicated in Figure 3. Nearly all
lipid-normalised individual PAH concentrations in the polychaete N. ciliata were significantly
higher in Blomstrandhalveya than in Ny-Alesund specimens (Table S6). The lower Z13PAH
content in Ny-Alesund specimens (Table S9) can be explained by different factors. The most
important factor may be differences in bioavailability related to differences in OM quality
between sites. For instance, sediment in Ny-Alesund harbour contained clearly visible black
carbon (BC) particles that are known to strongly bind organic contaminants such as PAHs
making them less available for uptake [78] (Figure 3, factor NY-7). BC particles (>10 um)
predominate in surface sediments from the middle part of the Kongsfjorden compared to the
outer part [171]. BC >10 pm are usually associated with local sources such as fossil-fuel fired
power stations located in different Svalbard human settlements. Secondly, transport of coal

particles from former coal mines within the Bayelva river catchment area, west of Ny-

39

Ariadna Szczybelski Thesis Headers.indd 39 @ 26-09-18 09:22:56



Chapter 2

Alesund, might also influence the final bioavailability of sediment-based PAH sources,
particularly in Ny-Alesund 4. borealis and N. ciliata specimens [148,172]. Thirdly, ongoing
degradation of weathered oil in Ny-Alesund [148,172] could have a highly significant impact
on Ny-Alesund individuals (Figure 3, factor NY-6) as this would minimize their in depth and

deposit feeding in the weathered oil immediately surrounding area.

NY-ALESUND (/q\_\ y[SN]|\ BLOMSTRANDHALV@YA AMen]

V777772 7222727 7
SHEEEEETEETEE

/L] 11I777777

Figure 3. Possible factors contributing to observed differences between sampling stations.
Ny-Alesund (NY): (1) terrestrial particulate organic matter (POM), (2) ice algae, (3) fresh
pelagic/settling organic matter (OM), (4) clayish river runoff, (5) advected and reworked
detritus, (6) weathered oil, (7) volatile organic compounds (VOCs). Blomstrandhalveya
(BL): (1) terrestrial POM, (2) ice algae, (3) pelagic/settling OM, (4) brown macroalgal
material, (5) advected and reworked detritus. A: Astarte borealis, B: Macoma calcarea, C:
Nephtys ciliata.

Additionally, differences in OM quality related to differences in species and biomass
composition of phytoplankton blooms and in macroalgae biomass would partly explain
different benthic PAH bioaccumulation patterns between stations. A higher predominance of
ice diatoms (Figure 3, factor BL-2) promoted by the resuspension of nutrients as a direct
consequence of the continuous down-fjord advection of deep freshwater [145] (Figure 3,

factor BL-5), as well as a higher input of macroalgal detritus [173] (Figure 3, factor BL-4),
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are expected to increase the PAHs partitioning from the water phase to fresh settling OM

(Figure 3, factor BL-3) as both algal materials are rich in polyunsaturated fatty acids (PUFAs)

[174]. A higher relative intake of PUFA-rich material may increase the bioavailability of 2
PAHs in Blomstrandhalveya, particularly in the case of filter feeders (e.g., 4. borealis).

Finally, streams leaving Blomstrandhalveya carried a much higher terrestrial settling OM

(Figure 3, factor BL-1) concentration per both water volume and dry wt. of suspended matter

than the Bayelva river (Ny-Alesund) [146] (Figure 3, factor NY-1). A higher input of

terrestrial OM in Blomstrandhalveya can contribute to the mineralization of settling OM

during sedimentation which eventually would increase the OC-normalised partition

coefficients in settling particles [175-177].

A short response time to fresh settling OM may also increase PAH bioaccumulation in M.
calcarea as concentrations of ANT, BaA, BaP and dBahA in M. calcarea Ny-Alesund
specimens were significantly higher than in Blomstrandhalveya specimens. Bayelva river
outflow usually contains a high proportion of clay materials (Figure 3, factor NY-4) that
could also enhance phytoplankton mortality while zooplankton may suffer from direct
mortality [131]. The immediate decrease of phytoplankton grazing by zooplankton due to the
oxygen depletion of surface waters, would ultimately favour the sedimentation of more fresh
phytoplankton (Figure 3, factors NY-2 and NY-3), which M. calcarea basically feeds on and
to which PAHs may adsorb. M. calcarea is also one of the few benthic species in the
Kongsfjorden of which a low trophic level and §'3C may suggest that this species is mainly
reliant on fresh phytoplankton or fresh phytodetritus during summer [136,178]. Additionally,
a lower PAH excretion capacity in M. calcarea [179,180] compared to the other two species
may contribute to the observed differences between Ny-Alesund and Blomstrandhalveya M.

calcarea individuals.

In summary, lipid-normalised PAH concentrations in all species seemed to be affected by
some station related variation. This may be explained by either a difference in SOM content,

origin and sedimentation rate of settling OM and BC strength source between stations.

Differences in PAH concentrations among species. BaP, dBahA and Ind123P burden in N.
ciliata was significantly higher than in both bivalve species at Blomstrandhalveya (Table S7).
This may be caused by a more opportunistic feeding pattern of N. ciliata when compared to
the bivalve species. Regarding Ny-Alesund samples, nearly all lipid-normalised individual

PAHs concentrations were significantly higher in M. calcarea compared with the other two
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species (Table S7). Since steady-state PAH body burdens in polychaetes can also be greatly
influenced by biotransformation processes [139,181], chronic PAH exposure is suggested to
increase the inducibility of PAH biotransformation enzymes (e.g., CYP) in Ny-Alesund
polychaetes, and thus the probability of finding lower PAH body burdens in Ny-Alesund
individuals [182]. Additionally, specific CYP enzymes involved in xenobiotic
biotransformation often are induced by substrates upon which they act, so that the mere
presence of some PAHs may trigger the expression of CYP enzymes (e.g., PYR and PYR
hydroxylase) [183]. However, long-term PAH detoxification might be slower, if not
negligible as explained in the PAH critical body residues section, in bivalves since the major
site of uptake and accumulation in these organisms is the digestive gland [169] whereas CYP
genes transcription has been described as a tissue specific process reflecting the importance of

¢gills in PAH detoxification [184].

In general, ingestion of SOM has been described as the major uptake pathway of organic
contaminants in temperate benthic species (4. virens, L. balthica) [56]. Additionally, a higher
ingestion rate, more opportunistic diet and higher dermal exposure of N. ciliata could lead to
an extended bioaccumulation of sediment-bound PAHs [185]. 4. borealis (filter-feeder) and
M. calcarea (deposit-feeder) feed mainly on fresh phytoplankton or fresh phytodetritus, as
shown by an abundance in algal-derived fatty acids in the same species [186,187]. In a
Chukchi Sea study performed by Neff et al. [188], ZPAH (parent and alkylated compounds)
concentrations were also higher in Macoma sp. clams and maldanid worms than in Astarte sp.
This may be due to the fact that, as a deposit-feeder, M. calcarea may also actively ingest

SOM.

In general, differences in species-specific PAH accumulation patterns were seen between the
three species, which can be explained by differences in uptake and elimination rates between
these species due to underlying mechanisms that however could not be assessed

unambiguously from the data.

Differences in PAH concentrations among species size-classes. For the Kruskal-Wallis test, a
Bonferroni correction was applied and all effects are reported at a 0.0167 level of
significance. We conclude that there is no significant size-class effect on A. borealis lipid-
normalised PAH concentrations (Table S10), neither on M. calcarea (Blomstrandhalveya)
PAH concentrations. Similarly, no significant differences were found in X13PAH lipid-

normalised concentrations between both bivalves size-classes.
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3.3.2. Polychlorinated biphenyls

Concentrations of PCBs in biota were below limit of detection in > 90% of the biota samples
analysed for every species and from both Ny-Alesund and Blomstrandhalveya station. PCBs

were therefore excluded from further analyses.

3.3.3. Hexachlorobenzene

Among species and stations, concentrations of HCB varied between < 0.01 and 14.16 pg/kg
lipid wt. The minimum and maximum values were detected in 4. borealis (Ny-Alesund) and
M. calcarea (Blomstrandhalveya), respectively. In general the highest concentrations in biota
tissues were found in Blomstrandhalveya specimens. M. calcarea Blomstrandhalveya
individuals were assessed as markedly polluted (Class I to Class III for HCB, between 0.1 and
1 pg/kg wet wt.) according to the EQSs for blue mussels defined by the Norwegian
Environment Agency [189]. HCB lipid-normalised concentrations were found to be
significantly higher in 4. borealis (Mann-Whitney U test, p <0.001) and M. calcarea (Mann-
Whitney U test, p = 0.005) Blomstrandhalveya specimens than in their Ny-Alesund
counterparts. An interspecies comparison within Blomstrandhalveya station samples showed
significantly higher (Kruskal-Wallis test, p = 0.027) HCB lipid-normalised concentrations in
A. borealis specimens. No size effect on HCB lipid-normalised concentrations was reported

after applying a Bonferroni correction.

3.4. Biota-sediment accumulation factors

For organisms that are closely linked to the sediment and are exposed mainly to sediment-
bound contaminants, the BSAF has been shown to be a useful metric of bioaccumulation
[56,82]. Here we explore to what extent BSAF is useful to assess bioaccumulation in the
Arctic species studied, hypothesizing that BSAF has the lowest value for suspension feeder A4.
borealis. Data were sufficient to calculate BSAF values only for PAHs. Mean BSAF values
are presented in Tables S11, S13 and S15 for both stations.

For Blomstrandhalveya, the 10-90th percentile range of Z;3PAH BSAF values per species
was 0.59 to 3.50 for A. borealis, 0.35 to 4.76 for M. calcarea and 1.88 to 5.50 for N. ciliata,
which thus shows a somewhat higher accumulation than the value of BSAF = 1-2 as predicted
by Equilibrium Partitioning Theory (EPT) for hydrophobic contaminants [190]. Similar
BSAF values have been reported earlier in the literature [56,83,191-193]. One explanation is
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that EPT neglects the ingestion pathway, whereas this pathway is relevant in nature. Another
potential explanation is that uptake was not from the sediment compartment but merely from
freshly deposited or settling suspended solids and their ambient water [136,194], having
higher chemical concentrations than the sampled sediment, due to atmospheric or melt-water
based sources of PAHs [121,177,195]. In Ny-Alesund, the 10-90th percentile range of

> 13PAH BSAF values per species was 0.00 to 0.02 for A. borealis, 0.05 to 0.07 for M.
calcarea and 0.00 to 0.02 for N. ciliata. These general ranges of the X;3PAH BSAF values in
Ny-Alesund comply very well with the BSAF values found for BC impacted sites [196,197].
Sediments in Ny-Alesund contain BC [171,198]. This is consistent with information from the
mean PAH diagnostic ratios FLT/(FLT + PYR) and Ind123P/(Ind123P + BghiP), which were
> 0.5 and 0.2 — 0.5, respectively (Table 1), and reflect a pyrogenic origin of these chemicals
[120].

PAH BSAF values were significantly higher in Blomstrandhalveya specimens compared to
Ny-Alesund specimens (Tables S12, S14 and S16). In the case of 4. borealis, all considered
BSAFs were significantly higher (Mann-Whitney U test, p < 0.001, Table S12) in
Blomstrandhalveya specimens. As for M. calcarea and N. ciliata Blomstrandhalveya
samples, significant differences between the stations were found in FLT, PYR, BaA, CHR
and BghiP (Mann-Whitney U test, p < 0.05, Table S14) BSAFs and FLT, BaA, CHR, BbF,
BghiP and Ind123P (Mann-Whitney U test, p < 0.05, Table S16) BSAFs in the first and

second species, respectively.

An interspecies comparison within Blomstrandhalveya station samples showed significantly
higher BbF BSAFs in 4. borealis (Kruskal-Wallis test, p = 0.006) whereas the same
comparison within Ny-Alesund showed significantly higher FLT, BaA and CHR BSAFs in
M. calcarea (Kruskal-Wallis test, p < 0.05). No size class effect was observed in either of the
species PAH BSAFs.

4. Implications and Conclusions

Our data analysis provides the first systematic evaluation of BSAF patterns across chemicals,
locations and species in the Arctic. PAH concentrations and BSAFs were higher in
Blomstrandhalveya specimens which was explained by stronger sorption to BC and lesser
uptake from ingested sediment in Ny-Alesund which in turn implies that the use of the BSAF

concept is not straightforward in these ecosystems. We conclude that PAH body residues can
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be applied as a less variable and more straightforward pollution monitoring parameter than

sediment concentrations or BSAFs as biota body concentrations in low trophic level species

give a good estimate of the bioavailable fraction of organic contaminants present in the 2
system. Based on this field study, the filter/deposit-feeding bivalve M. calcarea is proposed as

a (sub-)Arctic indicator of O&G-derived environmental impacts due to its ability to

accumulate PAHs in low O&G impacted areas (e.g., Ny-Alesund) regardless of its body size

class and to its selective feeding mode which decreases uncertainty on the species

bioavailable PAH sources.

Acknowledgements

Axel Meldahl (captain of the Teisten research vessel of Kings Bay AS [Ny-Alesund,
Svalbard] in summer 2013), Ben Frederiks (sampling assistance), Anja Johansen Haugerud
(Equinor ASA, logistics assistance), Anita Evenset, Oddmund J. Isaksen and Kristine
Hopland (Akvaplan-niva AS, logistics assistance) are highly thanked for their contributions.
Diego Rivera is kindly thanked for his contribution on Figure 3 drawing. Equinor ASA and
the Wageningen UR TripleP@Sea innovation programme (The Netherlands) are
acknowledged for funding the ARCIND project.

45

Ariadna Szczybelski Thesis Headers.indd 45 @ 26-09-18 09:22:58



Chapter 2
Supporting Information

Extraction, clean-up and instrumental analysis

Frozen sediment samples (Barents Sea) and freeze-dried sediment samples (Kongsfjorden)
were thawed at room temperature. Frozen pooled biota samples were thawed at room
temperature and subdivided into replicates of equal weight before drying. Sediment
subsamples and biota replicates were dried and grinded with diatomaceous earth and Soxhlet-
extracted for 40 min with hexane/acetone (3:1) (DionexASE 350 System, Thermo Scientific).
All extracts were split in two. One part was cleaned-up over an Al,O3 column and used for
PAH analysis, which was carried out on an HP 1100 HPLC equipped with a 4.6 mm Vydac
guard and analytical reverse phase C18 column (201GD54T and 201TP54, respectively)
which were kept at 22.00 °C. Detection was performed by an HP 1100 multi-wavelength
fluorescence detector operating in the multi-emission wavelength mode. The mobile phase

consisted of methanol/water (mixture and flow gradient). The injection volume was 20 pL.

The other part was cleaned-up using an Al,Os/silica column, desulfurized with Cu-powder,
and used for PCB and HCB analysis. PCBs were measured by splitless injection of 1 pL of
sample in an upgraded HP 5890 series II gas chromatograph equipped with an HP 7673 A
autosampler system, two fused silica capillary columns, CP Sil-8 CB and CP Sil-5 CB (both
50 m.; i.d. 0.15 mm; d.f. 0.20 um), and two %Ni electron capture detectors. The injector and

detector temperatures were 250 and 325 °C, respectively. Carrier gas was N2 (1 mL/min).

Besides recoveries 3 blanks per each batch of 30 samples were used, and values were

corrected for blanks.
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Table S1. HCB and PCBs limit of detection (LOD, pg/L) and limit of quantification (LOQ, pg/L).

Compound LOD LOQ
HCB 0.08 0.27 2
PCB 18 0.25 0.85
PCB 20 0.13 043
PCB 28 0.13 0.42
PCB 29 0.47 1.58
PCB 31 0.11 0.37
PCB 44 0.34 1.14
PCB 52 0.76 2.53
PCB 101 0.12 0.40
PCB 105 0.09 0.30
PCB 118 0.09 0.32
PCB 138 0.08 0.28
PCB 153 0.13 0.42
PCB 155 0.09 0.29
PCB 170 0.08 0.28
PCB 180 0.07 0.23
PCB 194 0.08 0.27
PCB 204 0.03 0.09
PCB 209 0.10 0.32

Table S2. Biota samples size classification.

Speci Size Shell/body length Blomstrandhalveya Ny-Alesund
pecies . .
class (mm) specimens specimens

1 <359 39
Astarte borealis 2 36.0-379 20

3 38.0-39.9 15 25

4 >40.0 12 45
Macoma 1 <255 30
calcarea 2 25.6-26.5 15 10

3 >26.6 30

1 <849 20
Nephiys ciliata § 9845.3) - 19()32.99 » 10

4 >103.0 15

47

Ariadna Szczybelski Thesis Headers.indd 47 @ 26-09-18 09:22:59



Chapter 2

Table S3. Sampling stations in Barents Sea and Kongsfjorden Bay (Svalbard, Norway).

Water  Sediment

Location Station Latitude Longitude depth  samples Biota spp.
(m)  (0.1m%
E Kong Karls Land S1 78°45.8'" 32°53.6' 250 4 n.a.
SE Edgeoya S2 77°14.0' 27°37.0' 230 3 n.a.
SE Edgeoya S3 77°13.8"  26°39.6' 130 3 n.a.
SE Edgeoya S4 77°00.0'  26°00.0' 110 3 n.a.
Snehvit S5 71°37.1'  21°04.3' 320 5 n.a.
Astarte borealis,
Ny-Alesund S6 78°55.0' n.a. 15-20 4 Macoma calcarea,
Nephtys ciliata
Astarte borealis,
Blomstrandhalveya S7 78°59.0' n.a. 20-25 4 Macoma calcarea,
Nephtys ciliata
Kapp Guissez S8 79°02.0'  na 4550 4 Astarte borealis,
Nephtys ciliata

n.a.: not available.
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Abstract

Increasing oil and gas activities may substantially increase chemical stress to benthic
ecosystems in the Arctic. Polycyclic aromatic hydrocarbons (PAHs) can be used as indicator
compounds for this increase. For temperate benthos, more information is available on the
potential accumulation of PAHs, which may be useful to address Arctic species. Here we
compare for the first time, the bioaccumulation of PAHs by Arctic benthic invertebrate
species, with that of temperate invertebrate species. PAH biota-sediment accumulation factors
(BSAFs) ranged 0.01 to 2.48 and were generally higher in the temperate bivalve (Limecola
balthica) than in the Arctic bivalve (Macoma calcarea, ranging 0.00 — 0.21). Arctic
polychaetes (Nephtys ciliata) showed higher BSAFs (0.00 — 1.79) than temperate polychaetes
(Alitta virens, 0.00 — 0.34). Differences in bioaccumulation were found among Arctic and
temperate species, reflecting species-specific feeding modes and traits. Bioaccumulation
modelling revealed that steady state was not likely to be reached in the 28-d tests for all
chemicals and organisms. Due to low numbers of individuals, most species-specific
parameters carried too much uncertainty to reveal differences between Arctic and temperate
species. No preference for ingestion of sediment organic matter (OM) over that of suspended
OM was detected, indicating a high PAH affinity for OM. The results from the present study
did not detect crucial differences in bioaccumulation between temperate and Arctic species.
This means that there is no indication that data from temperate species cannot be used as a

proxy for Arctic species in risk assessment.
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1. Introduction

The Arctic has a high sensitivity to oil spill impacts and has limited capacity for natural
recovery due to a very pronounced seasonality, mainly dictated by the reduction in sea ice.
Sensitivity may be increased by expanding shipping and oil and gas (O&Q) activities and the

lack of appropriate oil spill response methods for this area [199]. Therefore, biological targets

(i.e., bioindicators) for priority monitoring during all phases of O&G activities should be
used, to assess, minimize and mitigate adverse effects [199]. Polycyclic aromatic
hydrocarbons (PAHs) constitute a large group of hydrophobic contaminants and have been the
focus of previous environmental assessments because of their potential toxicity and
bioaccumulation [23,200]. Such chemical properties may be used to select appropriate

bioindicators of acute and chronic effects of O&G production.

Besides knowledge about chemical concentrations in the abiotic environment, bioindicators
are considered particularly useful to monitor trends in O&G related pollution, as they
integrate chemical and non-chemical stress and account for in situ ecological conditions
[74,201]. Arctic benthic systems are characterised by a high trophic diversity, relatively long
life-span and sedentary lifestyles of species [134], which makes them suitable for monitoring @
purposes, particularly in areas of O&G production. A particularly useful exposure metric to
define the bioindicator potential of O&G related bioaccumulative chemicals in benthic
invertebrates is the biota-sediment accumulation factor (BSAF) of PAHs, which can
adequately mirror the pollution state of the local Arctic ecosystem near O&G activities [202].
Compared to bioaccumulation (i.e., net result of influx (uptake) and efflux of contaminants)
by temperate species, little is known on bioaccumulation of PAHs from sediment by Arctic
benthic species. Cross-chemical extrapolation techniques such as read-across may help to
predict PAH bioaccumulation by Arctic species in the absence of experimental data [203]. If
bioaccumulation would be comparable between Arctic and temperate species with similar
traits, risk assessment for the Arctic might be simplified by using temperate species data as a
surrogate for Arctic species. Therefore, it is useful to explore (a) the potential for reading
across Arctic and temperate species and (b) the potential for reading across species with
different feeding traits and from the same region, with respect to bioaccumulation. Similarity
between Arctic and temperate species however may not be self-evident. For instance,
exposure times to contaminants may be longer in Arctic systems due to, for instance, Arctic

species having a longer life-span or biological reaction times being generally slower in polar
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biota than in temperate biota [125]. Clearance of PAHs and their metabolites may also be
slower in Arctic invertebrates, since chemical elimination rates are temperature-dependent and
affected by seasonal variability in lipid content [14]. Finally, seasonality in the environmental

conditions in the Arctic may have a major impact on the physiology of local species [36].

The BSAF has traditionally been used as a metric to assess the bioaccumulation of
contaminants from sediment and has been compared across a wide range of aquatic
ecosystems [80-82]. If Equilibrium Partitioning Theory (EPT) applies, BSAF values can be
expected to range between 1 and 2 [204]. This is based on the assumption that chemicals
partition between biota lipids and sediment organic carbon. However, EPT does not consider
the possibility of feeding as a route of uptake leading to higher than equilibrium steady-state
concentrations. In order to accommodate such situations where EPT does not apply, a kinetic
BSAF model was used [56,83]. Potentially, the BSAF may be a useful metric to compare
effects of species traits on bioaccumulation, because it can correct for differences in chemical
concentration, sediment organic matter (OM) as well as organism lipid content between the
sites or species that are compared. For benthic invertebrates, of which the geographic
distribution can span to (sub-)Arctic areas, we are aware of only two studies reporting BSAFs

[143,Chapter 2].

The objective of the present study is to compare bioaccumulation between four Arctic and two
temperate species, with different species traits, using 28-d whole-sediment tests [56,83]. An
additional objective was to assess whether the results can be generalized by using a time-
dependent BSAF model, previously used for describing bioaccumulation in temperate marine
and freshwater benthic invertebrates [56,83]. For the first time, we explore to what extent
BSAF is useful as a metric for bioaccumulation in Arctic benthic invertebrate species and for

conducting a comparison between Arctic and temperate species for bioaccumulation.

2. Materials and Methods

Based on their feeding habits, sessility and relative abundance [144], four Arctic benthic
species were selected; three bivalve species: Astarte borealis (Schumacher, 1817), Macoma
calcarea (Gmelin, 1791), Nuculana pernula (O.F. Miiller, 1771) and a polychaete species:
Nephtys ciliata (O.F. Miiller, 1776). These species are primarily abundant in Arctic climate
zones, although they are not restricted to this area (Table S1). Additionally, two temperate

benthic species (a bivalve: Limecola balthica [Linnaeus, 1758] and a polychaete: Alitta virens
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[Sars, 1835], formerly known as Macoma balthica and Nereis virens) were selected based on
their comparable feeding habits, sessility, availability of chronic test protocols and thus the
potential for a comparison with the Arctic species. We limited the present study to two
temperate species because we prioritized comparing bioaccumulation among Arctic and
temperate deposit feeding bivalves and polychaetes. Due to scarcity of M. calcarea

individuals at the sampling area, a second Arctic deposit feeder (N. pernula) was included.

Since M. calcarea may feed both on suspended and sediment OM, an obligate suspension
feeder (4. borealis) was also included to estimate the contribution of suspended OM to the

bioaccumulation of PAHs by M. calcarea.

2.1. Test organisms

We performed a 28-d sediment bioaccumulation experiment, with Arctic species and
conditions at Kings Bay AS (Ny-Alesund, Svalbard) between September and October 2014,
here onwards named as “AE” (Arctic Experiment); and one with temperate species and
conditions at Wageningen Marine Research (Yerseke, the Netherlands) between July and
August 2014, here onwards named as “TE” (Temperate Experiment). Sediments in the Arctic
(AE) and temperate (TE) experiments were the same for the same phylum. Emphasis was on @
simulating environmentally realistic PAH exposure levels, which implied use of
representative species of the macrobenthic community of each climate region and field-
contaminated sediments. This also implied that sometimes numbers of individuals were too
low to allow for testing all sediment treatments. This is a limitation inherent to Arctic marine

ecological research.

Permission for sampling of Arctic and temperate species was issued by The Governor of
Svalbard and the Province of Zeeland, respectively. Sampling of Arctic species was
performed along a transect from Tensneset (79°022"N, 11°57'10"E) to Blomstrandhalveya
(78°59'14"N, 11°5728"E), Kongsfjorden Bay (Svalbard, Norway), whereas L. balthica was
collected at low tide at the Oesterdam (The Netherlands, 51°26'24"N, 4°13'16"E). 4. virens
was obtained from a professional bait farm, Topsy baits (Wilhelminadorp, the Netherlands).
Arctic and temperate species were acclimatized under test conditions. Arctic species were
kept in filtered natural sea water (20 pm) during 2 to 6 d without food supply, whereas in the
TE experiment animals were kept in filtered natural sea water (0.2 um) during 5 d and were
fed once at the start of the acclimatization. For further details of the acclimatization of test

species and sediment collection, see the Supporting Information (SI).
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2.2. Sediment treatments preparation

Since both 4. borealis and M. calcarea usually reside in sandy sediment and N. ciliata is
generally found in sandy mud [40], two different batches of sediment were prepared after
sediment collection to ensure an optimal habitat for the test species. Each contained different
ratios of muddy and coarse sediment, respectively defined as < 0.5 and 0.5 — 1 mm grain size.
Bivalves sediment (BS) contained two-thirds of coarse and one-third of muddy sediment,
whereas polychaetes sediment (PS) contained two-thirds of muddy and one-third of coarse
sediment, based on volume. Sediment was collected in the Oosterschelde estuary (The
Netherlands, 51°36'13.5"N, 3°47'49.3"E) on 24 to 25 April 2014 and 2 May 2014 and used to
create the sediment treatments for both the AE and TE experiments. This was done to ensure
homogeneity of exposure of treatments among experiments. These sediment mixtures contain
background PAH levels and therefore are referred to as the ‘low’ (L) treatment hereafter
(BSL, PSL). PAH concentrations differed between BSL and PSL treatments (Tables S2 and
S3) due to differences in their mud content and other variables creating sediment
heterogeneity, and were one order of magnitude higher than in sediment previously collected

at the Arctic species collection site (Blomstrandhalveya) (Chapter 2).

From each of these two initial batches with low chemical concentration, another two sediment
treatments were prepared with a higher chemical concentration, referred to as the ‘medium’
(M) and ‘high’ (H) concentration. The ‘medium’ treatment contained 5% (vol.) of harbour
sediment (Rotterdam, the Netherlands), while the ‘high’ treatment contained 10% (vol.) of
harbour sediment. These percentages were used (a) on a precautionary basis since neither the
harbour sediment chemical concentrations nor the effect threshold for each of the species were
known and (b) to be able to link non-lethal effects of chemical concentration to endpoints
studied (Chapter 4). These preparations thus resulted in six sediments: three for bivalves
(BSL, BSM, BSH) and three for polychaetes (PSL, PSM, PSH) (Figure S1). All sediment
treatments were thoroughly mixed with a turbine mixer for approximately 15 min before
storage/transport from the Netherlands to Svalbard and again right before use in the exposure
experiments. Of all sediment treatments, chemical concentrations and other characteristics
(i.e., dry wt. and OM content) were assessed (Tables S2 and S3). Due to logistics, storage
time (3 — 7 °C) for sediment treatments was 9 weeks longer in the AE than in the TE
experiment. Prior to start of exposure, sediment treatments were allowed to stay in contact

with filtered sea water in a 1:6 sediment-to-water volume ratio without aeration for 3 d and
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with aeration for the following 4 d. Some experimental units in the AE experiment were
aerated for 12 to 17 d because biota field sampling took place for a longer period than initially

expected (the first 3 weeks since the aeration started).

2.3. Experimental design

Experimental designs were similar for AE and TE except for ambient temperature and

photoperiod. The AE experiment was a 28-d test in a temperature controlled room at 3 °C
under a photoperiod of 12 h light: 12 h dark. All planned sediment treatments were run with
N. ciliata (PSL, PSM and PSH) (n = 1 — 3; Table S4). However, due to low numbers of
available organisms, only two treatments (BSL and BSH) were tested with M. calcarea (n=1
— 2) and only one treatment (BSH) was tested with A. borealis and N. pernula (n =2 —3;
Table S4).

The TE experiment was a 28-d test in a temperature controlled room at 18 °C under a
photoperiod of 16 h light: 8 h dark. All sediment treatments were tested with 4. virens (PSL,
PSM and PSH) (n = 2 — 3). Due to low availability of test organisms only two treatments were

tested with L. balthica (BSL and BSH) (n = 1 — 3).

For statistical purposes, only measured data for BSH and PSH treatments were used due to
either a low level of replication of BSL and PSM treatments (Table S4) or the heterogeneity
among PSL replicates in their OM content (Tables S2 and S3). Data for all treatments were

used for bioaccumulation modelling.

Individuals were randomly divided in groups of 16 to 50 individuals per experimental unit
(Table S4). Animals were not fed during exposure, although sediment OM content (2 — 6%)
and in some cases food supply during acclimatization (i.e., temperate species) prevented body

[56] and lipid weight loss (Tables S5 and S6) during the experiment.

2.4. Endpoints

Prior to the start and at end of the experiments, organisms were allowed to depurate their guts
for 24 h in filtered sea water. At the end of each experiment, animals were weighed, measured
for body or shell length, dissected (e.g., bivalves) and pooled by species. Samples were stored
at -20 °C for later determination of wet wt. and lipid fraction, expressed as % wet wt., and

chemical concentrations (ng/kg wet wt.). Experimental units were checked daily for mortality

(i.e., animals at surface and immobile after poked), and dead organisms were removed daily.
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At the start of the AE experiment only subsamples of A. borealis and N. pernula were
archived, to assess the initial conditions (‘Background’). This was however, not feasible for
M. calcarea and N. ciliata due to the low number of individuals. At the end of the
experiments, samples of each sediment treatment were stored at -20 °C for later determination
of dry wt., OM content and chemical concentrations (pg/kg dry wt.). Sediment samples were
also taken at the beginning of the AE experiment (Table S2). Biota and sediment samples
from both experiments were shipped frozen in dry-ice to Wageningen University

(Wageningen, the Netherlands) for chemical analysis.

2.5. Chemical analysis

Chemical analysis was conducted according to methods used by Kupryianchyk et al. [150].
The following PAHs were analysed: Phenanthrene (PHE), Anthracene (ANT), Fluoranthene
(FLT), Pyrene (PYR), Benz(a)anthracene (BaA), Chrysene (CHR), Benzo(e)pyrene (BeP),
Benzo(b)fluoranthene (BbF), Benzo(k)fluoranthene (BKF), Benzo(a)pyrene (BaP),
Benzo(ghi)perylene (BghiP), Dibenz(a,h)anthracene (dBahA) and Indeno(1,2,3-cd)pyrene
(Ind123P). PAH recoveries were 85 to 94% and 64 to 75% for biota and sediment samples,
respectively. Three blanks per each batch of 30 samples were used, and values were corrected
for blanks. Benzo(k)fluoranthene and benzo(a)pyrene could not be accurately determined due
to overlapped retention times with an unknown compound. For further details on extraction,

clean-up and instrumental analysis see the SI.

2.6. Data analyses

Lipid-normalised concentrations after 28 d were calculated in biota samples for all available
sediment treatments. Biota-sediment accumulation factors were calculated as
(Corg/tiip)/(Csed/foc) with Corg being the chemical concentration in the organism (pg/kg wet
wt.), Csed the chemical concentration in sediment (nug/kg dry wt.), fiip the fraction of lipids in
the organism based on wet weight and foc the fraction of sediment organic carbon (OC) based
on loss of ignition and an OC/OM conversion ratio of 0.4 [56,83]. Lipid-normalised biota
concentrations and BSAFs of BSH exposed bivalves and PSH exposed polychaetes were
checked for normality with Q-Q plots and Shapiro-Wilk test and equality of variances with
Levene’s test. If data were normally distributed, lipid-normalised biota concentrations and
BSAFs were tested for species and climate region effect with a one-way ANOVA or an

independent ¢ test, respectively, for each PAH compound. If data were non-normally
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distributed, these were log-transformed, and in case a normal distribution still was not
reached, lipid-normalised biota concentrations and BSAFs were tested for species and climate
region effect with the Kruskal-Wallis test and Mann-Whitney U test in combination with
Kolmogorov-Smirnov Z test, respectively, for each PAH compound. Significance level of an
overall statistical comparison was set at p < 0.05, while for pairwise comparisons among

species or chemicals the Bonferroni and Holm’s sequential Bonferroni corrections were

applied, respectively. All statistical calculations were performed using SPSS version 22.

2.7. Bioaccumulation modelling

The usefulness of modelling bioaccumulation in invertebrate lipids was explored according to

methods described in Diepens et al. [56], following previously published models (e.g., [205]).

In short:
w+ax1x[ﬁ+(1—ﬁ)><y]
_ Cut=o —(ketkg)t K¢ _ o—(ketkg)xt
BSAF, = P X e g)t 4 o) x(1-e g)xt) (1)

in which C ;- (ng * kg'") is the measured concentration in the biota at time zero, normalised
to lipid content, ngfg=0 (ug x kg!) is the measured concentration in sediment at time zero, @
normalised to OC content,  (d) is time, k. and k. (d™') are the rate constants for overall
elimination and growth dilution, K is the ratio k. / k. which equates to an apparent lipid-
water partition coefficient, and k. the rate constant for dermal uptake (L x kg™ x d™), a () is
the chemical assimilation efficiency (assumed to be independent of food source) and 7 (> 0,
kgoc x kgLipias! % d!) represents the mass of ingested OC per unit of time and organism lipid
weight, £ (0 <f < 1) is the fraction of ingested OC originating from the sediment, whereas 1 —
p is the fraction of ingested OC originating from the suspended and freshly deposited
(sediment top layer) solids, and y is a constant ratio between the sorption affinities for
suspended OC and sediment OC (K52 = yKSEP). Note that Eq. (1) models an OC based
BSAF, whereas Diepens et al. [56] used a similar version yet normalised on OM. The ingested
OC is thus allowed to originate partly from suspended solids (SS) from the overlying water
and partly from the sediment (SED). Ingestion of multiple food items by benthic invertebrates

has been modelled before in a similar manner [56,80,83].

The parametrization process and calculations of the percentage of uptake through water and of

the fraction of steady state reached in the bioaccumulation test have been described before
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[56,83] and are provided in the SI. For further explanation of modelling and calculation of
90% Confidence Intervals (Cls) the reader is referred to the SI.

3. Results and Discussion

3.1. PAH background concentrations

In the Arctic bivalve 4. borealis average £13PAH concentrations when the animals were
collected were 9.4 mg/kg lipid wt. This was 9 times higher than in 4. borealis individuals
collected by Szczybelski et al. (Chapter 2) at the same sampling area (Blomstrandhalveya) in
July 2013 (Figure S4; Table S10). Concentrations of PHE and CHR were highest (46% of the
213PAH) in A. borealis collected in September, whereas individuals collected in July
accumulated PHE and PYR (46% of the £13PAH) which was similar to concentrations
analysed in local sediments by Szczybelski et al. (Chapter 2). Changes of an order of
magnitude in PAH concentrations between both years were observed for PHE, ANT, CHR
and BghiP. A significant increase in CHR 4. borealis concentration would comply with
generally high 4-ring PAHs concentration in sediment surface layers from the inner areas of
Kongsfjorden [206], whereas an increase in BghiP might be linked to some disturbance of
deeper layers [206] and/or deposition of terrestrial petrogenic PAHs after bedrock erosion and
sediment transport by Blomstrandhalveya rivers and tributary streams during late summer

[207].

In the temperate bivalve L. balthica average £13PAH concentrations in individuals collected at
Oesterdam (The Oosterschelde National Park, the Netherlands) were 35.5 mg/kg lipid wt.
(Table S6). Concentrations of PYR and BaA were below concentrations found in L. balthica
collected in the Westerschelde estuary (The Netherlands) [208]. In the temperate polychaete
A. virens, Z13PAH concentrations were lower than in L. balthica (10.4 mg/kg lipid wt.) (Table
S6). This may be expected as A. virens were obtained from an aquaculture farm and L.

balthica were collected in the field.

3.2. Effects of Arctic species traits on PAH bioaccumulation

Lipid-normalised £13PAH concentrations in Arctic invertebrates in the high treatment (BSH
or PSH) were 13.1 mg/kg in M. calcarea, 20.2 mg/kg in N. ciliata, 37.7 mg/kg in A. borealis
and 144.8 mg/kg in N. pernula (Table S5). The 3- to 4-ring PAHs were generally accumulated

by the filter feeder A. borealis which agreed with a higher fraction of these compounds in
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BSH sediment. The 5- to 6-ring PAHs were strongly accumulated (i.e., up to one order of
magnitude higher than background concentrations) by the deposit feeder N. pernula which did
not show this same agreement with BSH sediment composition. This disagreement might be
explained by a higher PAH accumulation by N. pernula than the other two Arctic bivalves
prior to the experiment start [209], slow PAH excretion [210] and non-equilibrium between N.

pernula lipid tissue and sediment during the AE experiment.

The 3- to 4-ring PAHs (i.e., PHE, ANT, FLT and PYR) concentrations were on average 2.5 to
4 times higher in the BSH exposed filter feeder 4. borealis compared to the deposit feeding
bivalves (M. calcarea and N. pernula). An increase in FLT and PYR concentrations can be
explained by the fact that the concentrations of these PAHs in BSH sediment were also high
(Table S2). Concentrations of CHR were on average 42 times higher in BSH exposed N.
pernula than A. borealis (Table S5), although CHR concentration in BSH sediment was very
low (Table S2). In this case, considerably high CHR concentrations in N. pernula might be
explained by the species ability to ingest sediment to a larger extent than the other Arctic
bivalves [209] and to retain PAHs as observed by Neff et al. [210]. In the polychaete V.
ciliata, differences in the concentration of PHE, FLT, PYR, BaA, BbF and BghiP between the
low (PSL) and high (PSH) exposed individuals reflected the difference in concentrations @
measured in the PSL and PSH sediments (Tables S2 and S5).

No statistical differences in PAH concentrations were found between the deposit feeding
bivalves M. calcarea and N. pernula in the BSH exposures. However, this conclusion should
be made with caution as the number of samples available per species was low and the two
species show different feeding behaviours (Table S1; [136,209,211]). Variability in
metabolism of PAHs by some of our target species (4. virens, L. balthica) is well described in
the literature [ 139], with generally higher metabolism rates in temperate polychaetes than
bivalves. Although not evaluated in the present study, an increase in general metabolic
activity [212,213] and a moderate production of reactive oxygen in Arctic species at the end
of summer [214,215] may promote the efficiency and prevent the inhibition of PAH
biotransformation, respectively. Metabolism of PAHs in Arctic species is expected to be
lower than in temperate species due to low temperature and generally low food availability

[73,104].

Polycyclic aromatic hydrocarbons BSAFs were generally low (i.e., BSAF <1) and higher in
BSH exposed 4. borealis than PSH exposed N. ciliata. This may be linked to a higher black
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carbon (BC) and amorphous OM content in PSH sediment, which would decrease PAH
bioavailability in polychaetes. Harbour sediments are known to contain more BC [53,216]
than sediments from the collection site (The Oosterschelde National Park, the Netherlands)
and the Rotterdam harbour area has been subject to considerable BC deposition [217]. The
BSAFs for all PAHs ranged from < 0.0001 to 18, but they were often smaller than one which
is considered to be caused by the strong sorption of the planar PAHs to BC [196,218]. The 10-
90th percentiles of the BSAF for all PAHs in the high treatment (BSH or PSH) exposed biota
ranged 0.02 to 1.13 for 4. borealis, 0.01 to 0.21 for M. calcarea, 0.03 to 16.64 for N. pernula
and 0.01 to 1.70 for N. ciliata (Figure 1; Table S11). The BSAFs for PHE, ANT, FLT and
PYR were on average 2 to 5 times higher in A. borealis compared to the deposit feeding
bivalves, whereas CHR BSAFs were up to 58 times higher in N. pernula than in the other two

Arctic bivalves.
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Figure 1. Modelled biota-sediment accumulation factors (BSAFs) (closed symbols) based on
the minimum sum of squares and actual measured BSAFs (open symbols) for different
polycyclic aromatic hydrocarbons in Arctic and temperate species exposed to the high treatment
(BSH/PSH). AE: Arctic experiment; TE: temperate experiment.

Significantly higher BSAFs were found for ANT in BSH exposed 4. borealis than in PSH
exposed M. ciliata (Tables S11 and S15). Higher PAH BSAFs in bivalves compared to

polychaetes may be explained by a higher BC content in PSH than in BSH sediment, which

would decrease PAH bioavailability in the polychaete experiment, and by a higher OM

content in PSH than in BSH sediment, which may result in a higher nutritional value of PSH

Ariadna Szczybelski Thesis Headers.indd 73

73

@

26-09-18 09:23:14



Chapter 3

and reduction in polychaetes feeding. Both BSH and PSH treatments presented a similar
pyrogenic PAH component, which may be indicative of BC presence in both sediment

treatments [151].

3.3. Effects of temperate species traits on PAH bioaccumulation

Lipid-normalised Z13PAH concentrations in the high treatment (BSH or PSH) exposed
invertebrates were 32.9 mg/kg in L. balthica and 9.4 mg/kg in 4. virens (Table S6). L.
balthica accumulated PAHs to a larger extent or excreted less than the polychaete 4. virens,
yet increasing PAH concentrations between the low and high treatment were reflected better
by A. virens body residues. Increasing PAH concentrations in clams and sediment did not
correlate between the low and high treatments. Such lack of correlation might be explained by
other PAH uptake routes being dominant in L. balthica such as dermal absorbance or

suspended solids ingestion.

Concentrations of PAHs were significantly higher in the BSH exposed deposit feeder L.
balthica than in the PSH exposed polychaete A. virens (Tables S6 and S17). This may be
related to several factors, like higher PAH background concentrations, higher bioavailability,
lower elimination rates, longer exposure times and high food selectivity in L. balthica

[56,179].

In L. balthica, PAH concentrations were 2-fold (FLT, BbF, dBahA, Ind123P), 3-fold (PYR,
BeP) or 4-fold (BaA) higher in BSH than BSL individuals, whereas the concentrations were 4
to 10 times higher in BSH than in BSL sediment (Tables S3 and S6). An explanation to this
disproportionality between organisms and sediment may be either a low PAH uptake from
sediment compared to dermal uptake [56,219] or differences in congener-specific absorption

efficiencies from sediment in L. balthica [220].

In A. virens, a 2-fold increase in FLT, PYR, BeP and dBahA body residue was observed
between the low and high treatment exposed individuals which was expected from the
congeners increase between PSL and PSH sediment concentrations. Fluoranthene (FLT),
pyrene (PYR) and benzo(e)pyrene (BeP) were also correlated between A. virens body residue
(wet wt. basis) and sediment concentrations after 28 d of exposure to polluted sediments from

Oslo (Norway) [221].
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Polycyclic aromatic hydrocarbons BSAFs were higher in BSH exposed L. balthica than in
PSH exposed A4. virens which is likely due to differences in biota PAH background
concentrations and bioavailability between sediment treatments. The 10-90th percentiles for
BSAFs for all PAHs in high treatment exposed biota ranged from 0.02 to 2.36 for L. balthica
and 0.00 to 0.25 for A. virens (Figure 1; Table S12). Biota-sediment accumulation factors
were on average 1.5 to 24 times higher in BSH exposed L. balthica than in PSH exposed 4.

virens. This may be explained by a combination of different factors such as lower PAH
bioavailability in 4. virens due to a probably higher BC and other organic material content in
PSH than BSH sediment [222], lower sediment ingestion by A. virens compared to L. balthica
[56] and generally higher PAH biotransformation capacity in polychaetes [181].

3.4. PAH bioaccumulation among Arctic and temperate species

Lipid-normalised PAH concentrations were generally higher in the temperate deposit feeding
bivalve (L. balthica) than the Arctic one (M. calcarea), when exposed to the same sediment
treatment (e.g., BSH). Only ANT concentrations were found to be 2 times higher in M.
calcarea when compared to L. balthica (Figure 2; Tables S5 and S6). This may be explained
by the fact that temperature affects OM-water and lipid-water partition coefficients, and thus @
bioaccumulation and BSAF values if other conditions are the same. Lower temperature has
been found to increase PAH affinity to OM [223], and also to decrease lipid partitioning
[224]. In the case of M. calcarea, these processes probably play a role but it was not possible

to unambiguously identify the main reason for the apparent difference between the species.
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Figure 2. Geomean polycyclic aromatic hydrocarbons (PAHs) concentrations (ug/kg lipid wt.)
in Arctic and temperate species exposed to the high treatment (BSH/PSH). MC: Macoma
calcarea; NC: Nephtys ciliata; LB: Limecola balthica; AV: Alitta virens.

Additionally, differences between field-sampled L. balthica and M. calcarea and differences
in food selectivity may have led to differences in their general performance during the TE and
AE experiments. For instance, in the case of M. calcarea, strong temperature gradients (0 — 4
°C) described at sampling depth (20 m) within a 2 month period in late summer [145,225]
could have increased energy allocation to physiological maintenance in the Arctic bivalves
decreasing their energy budget [38,226], whereas the absence of phytoplankton input in the

experiment can cause a rapid onset of lowered metabolic rate in M. calcarea adults [136,227].

The Arctic polychaete (N. ciliata) showed on average 2 to 3 times higher ANT, PYR, BaA
and BbF concentrations than the temperate polychaete (4. virens) (Figure 2; Tables S5 and
S6). This may be related to the fact that food conversion can be more effective in N. ciliata
under low temperature compared to A. virens [228], thus lowering energy loss and improving
the Arctic polychaete’s fitness. Reproductive and morphological differences between the
species can also affect their feeding activity rates and PAH bioaccumulation. A <12 h
photophase is known to trigger onset of sexual maturity in polychaetes and to reduce their
feeding rate [229,230]. It is possible that the feeding rate for the Arctic species N. ciliata was
reduced during the period of sampling (8 — 26 September), when the natural photophase
rapidly reaches <12 h [229,231]. In the case of the temperate species A. virens, both farm
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growing and TE conditions (photophase >12 h, 18 °C) ensured gametogenic development

arrest in mature females [232].

Following this last assumption, stable feeding activity would have made a PAH assimilation
peak possible, which in this case was assumed to have been reached at an earlier exposure
time in the temperate polychaete A. virens than in the Arctic polychaete N. ciliata. This can be

due to continuous feeding by A. virens, which may not only increase the contact time of the

species intestinal epithelium and coelomic fluids with PAHs [233], and thus increase PAH
solubilisation, but may also lead to oxidative stress and ultimately to biotransformation
enzymes induction [181,234]. Nephtyidae species such as N. ciliata, usually have a much
smaller gut volume than other deposit feeding polychaetes and take discrete meals as part of
their carnivore diet [235]. This may to some extent restrict the species PAH absorption [236],
although stable pre-oogenesis conditions (12 h light: 12 h dark) in the absence of animal food
(i.e., AE experimental conditions), would make it necessary for the animals to increase their
deposit feeding activity over time in order to maintain PAH tolerance mechanisms. Although
we have no conclusive evidence for this explanation, this could have possibly created a
difference between both species so that A. virens energy budget at exposure start and also its

PAH bioaccumulation were higher than in N. ciliata. @

Biota-sediment accumulation factors for 2- to 3-ring PAHs were higher in BSH exposed M.
calcarea than in L. balthica which, similarly to the differences between PAH lipid-normalised
concentrations, could be explained by higher waterborne PAH uptake in M. calcarea. Biota-
sediment accumulation factors for PAHs were generally higher in PSH exposed N. ciliata than
in 4. virens. Ranges of BSAFs for all PAHs were < 0.0001 to 18, in the order M. calcarea =~
A. virens < A. borealis < N. ciliata < L. balthica < N. pernula. However, only species exposed
to the same sediment treatment (BSH or PSH) under different climatic conditions (AE vs TE)
and with the same feeding modes can be directly compared (i.e., M. calcarea vs L. balthica
and N. ciliata vs A. virens). The BSAF 10-90th percentile ranges for all PAHs in the high
treatment exposed biota were 0.01 to 0.21 for M. calcarea, 0.02 to 2.36 for L. balthica, 0.01 to
1.70 for N. ciliata and 0.00 to 0.25 for A. virens. Phenanthrene (PHE), anthracene (ANT) and
fluoranthene (FLT) BSAFs were 2 to 3 times higher in the Arctic bivalve compared to the
temperate one, whereas PAH BSAFs were generally 2 to 17 times higher in the Arctic
polychaete compared to the temperate one (Tables S11 and S12), pointing to a generally

higher PAH uptake from water in the Arctic species compared to the temperate ones.
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3.5. Modelling PAH bioaccumulation by Arctic and temperate species

The modelled BSAFs matched well with the measured BSAF data. Confidence Intervals (CIs)
for modelled BSAFs however were generally wide for most parameters and species, reflecting
the variability in the biological data (Figure 1; Table S21). Complete data sets, with all
treatments, were available for N. ciliata and A. virens and only data for the high treatment
were present for all species. This also defines the cases for which parameters were estimated

(Table S21).

The intercept b in the relation LogK55P = LogKoy + b, determining the affinity of chemical
partitioning to OC, was optimized to a value of 1.07 (0.81 — 1.33; 90% CI). This is higher
than the well-established value of -0.21 for natural sediment [237], and can be explained from
PAHs being efficiently bound to BC present in the sediment [78,197]. This is consistent with
the aforementioned PAH diagnostic ratios indicating pyrogenic PAH sources, and with many
measured BSAF values being smaller than one. The sorption affinity ratio y was fitted and
appeared indistinguishable from one, whereas the fractions of ingested sediment (parameter /)
had 90% ClIs extending beyond parameter constraints and were overlapping among species.
This implies that the present experiments did not identify a difference in sorption to
suspended OM and sediment OM (i.e., K52 = K3EP), and thus that it does not matter what
type of OM is ingested. Accordingly, the fraction of ingested sediment (parameter f3), was set
to one. This reduced the number of parameters fitted (p = 19; Table S21), which yielded
narrower Cls for the remaining parameters. Hence, the present model analysis was less
rigorous as those provided by Diepens et al. [56] and Sidney et al. [83] who detected

significant values for f based on larger data sets.

In general, BSAFs decreased or remained at a constant value with increasing log Kow (Figures
1 and S5), which agrees with earlier findings [56,83]. One explanation for this, as discussed
by Diepens et al. [56], may be that steady state was only reached for PHE, ANT, FLT and
PYR in M. calcarea and L. balthica during the 28-d experiment (Table S22).

However, for two chemicals (CHR and BghiP) high BSAF values were measured and
predicted, which was not in line with the other values and expected trends with log Kow. This
can be explained by the high CHR and BghiP background concentrations in the organisms, at

start of the experiment (Tables S5 and S6), and low clearance rates.

78

Ariadna Szczybelski Thesis Headers.indd 78 @ 26-09-18 09:23:16



Chapter 3

Since particle ingestion may be a dominant PAH uptake route in benthic organisms [80],
ingestion rates (/) were fitted and expressed on an OM basis. In general, ingestion rates were
low or even zero (Figure 3; Table S21). For Arctic species a low ingestion rate would be
expected as metabolic rates are reduced and growth rates are constrained in cold-adapted
stenotherms [38]. However, comparison of the temperate species L. balthica and A. virens to

previously published data shows that these values are below the lower 90% CI boundary and

below the range of 0.13 to 0.62 kgom X kgripias | X d! reported by Thomann et al. [238]. We
speculate that the low apparent ingestion rates may be caused by a high nutritional value of

the sediment, resulting in the dominance of dermal uptake.

For M. calcarea and A. borealis, the values for proportionality parameter ‘a’ in ‘log k. = —log
Kow t+ a’, required to calculate the elimination rate (k.), were either overlapping or above
previously published Cls for L. balthica, respectively (Table S21). For N. ciliata it was higher
than previously published CIs for 4. virens [56]. The magnitudes of ‘a’ for the temperate
species L. balthica were higher than previously published CIs for PCBs [56,239]. For A.
virens, magnitudes of ‘a’ were lower than previously published CIs for PCBs [56], whereas

PAHs often are considered to be metabolised easier than PCBs [139,181].

The relative importance of chemical uptake pathways depends on the species, the chemical,
treatment and estimated value of the ingestion parameter (Table S21). In all cases where the
ingestion parameter fitted rates were zero, consequently the contribution of the OM ingestion
pathway is modelled as 0%. In the high treatment (BSH or PSH), N. pernula and A. virens
show 100% uptake from OM ingestion, whereas for 4. borealis, M. calcarea and N. ciliata
the model suggests 100% uptake from water (Table S23). For L. balthica, the chemical uptake
from sediment increases with increasing log Kow. These patterns and values agree with earlier
published data [56,239,240]. Although lower elimination rates and ingestion rates for Arctic
species compared to their temperate counterparts may be expected, this cannot be seen from
the present data and parameters. Because the present bioaccumulation data set was not large
enough for model validation purposes as in previous modelling studies [56,83], we ascribe

this to the higher variability and uncertainty in the present bioaccumulation data.
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Figure 3. Optimized model parameters and 90% confidence limits (CLs) for ingestion rate (I;
kgoc % kgLipias! * d') and intercept for elimination rate constant (ke) (a; -). Az ‘I’; B: ‘a’ for
species exposed to the high treatment (BSH/PSH). ‘I’ was fitted separately for medium
(squares) and high (triangles) treatment. Parameter values are only included if a 90% CL
could be assessed in at least one direction. AB: Astarte borealis; MC: Macoma calcarea; NP:
Nuculana pernula; NC: Nephtys ciliata; LB: Limecola balthica; AV: Alitta virens.

4. Conclusions and Implications

We showed significant differences in PAH bioaccumulation among temperate species with
different feeding traits, and only for ANT among Arctic species. Differences between Arctic

and temperate species with similar feeding traits, were generally not significant.
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Bioaccumulation of PAHs from sediment was generally higher in the Artic polychaete V.
ciliata than in the temperate A. virens. On the contrary, the temperate deposit feeding bivalve
L. balthica accumulated PAHS to a greater extent from sediment than its Arctic counterpart M.
calcarea. Consequently, bioaccumulation metrics experimentally determined in temperate
species might become too conservative in the risk assessment for similar Arctic species and in

other cases too moderate.

The time-dependent BSAF model shows that model parameters did not significantly differ
among species and climate regions. This is supported by the generally non-significant
differences in PAH bioaccumulation between Arctic and temperate species. This implies that
although modelling has been shown to be a valid tool in earlier work [56,83], insufficient data
for an appropriate parametrization limited the insight provided by modelling in the present
study. Field validation of bioaccumulation models, of which data assumptions are built on
temperate species data, will however require Arctic standard single-species tests to be able to
further characterize sediment bioaccumulation mechanisms, such as contaminant uptake and

elimination routes, under local conditions.

The present study used the same sediments and conditions mimicking Arctic and temperate
environmental conditions and used Arctic and temperate species with pairwise matching
functional groups. Differences in bioaccumulation in a direct comparison of the two climate
regions characteristics were observed, which however were not statistically significant due to
considerable variability in the biological control data, and similarity in exposure routes. This
means that a cautionary note should be sounded on the use of temperate benthic species as a

surrogate for Arctic benthic species in bioaccumulation assessment.
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Supporting Information

Field sampling

Sampling of Arctic species. Sampling in Kongsfjorden was mainly performed near
Blomstrandhalveya and to a lesser extent at Gluudneset and Tyskerhytta, Kongsfjorden Bay
(Svalbard, Norway). Sampling took place outside the protected areas of Kongsfjorden on
board of research vessel MS Teisten (Kings Bay AS, Ny-Alesund) between 8 and 26
September 2014 and within the Outer Basin community distribution area as defined by
Wiodarska-Kowalczuk and Pearson [147]. Biota samples were collected using a Van Veen
grab (0.1 m?). Four Arctic marine benthic invertebrate species with different feeding
behaviors were collected: Astarte borealis (mollusc; suspension feeder [Schumacher, 1817]),
Macoma calcarea (mollusc; surface deposit and suspension feeder [Gmelin, 1791]), Nuculana
pernula (mollusc; sub-surface deposit feeder [O.F. Miiller, 1771]) and Nephtys ciliata
(polychaete; predator [O.F. Miiller, 1776]) (Table S1).

Sampling of temperate species. Limecola balthica (mollusc; surface deposit and suspension
feeder [Linnaeus, 1758]) was collected at low tide at the Oesterdam, Zeeland, the
Netherlands, between 16 and 17 July 2014. Alitta virens (polychaete; predator and deposit
feeder [Sars, 1835]) were obtained from a professional bait farm, Topsy baits,

Wilhelminadorp, the Netherlands (Table S1).

Acclimatization

Arctic species were kept in glass aquaria with aerated, filtered (20 um) and UV-treated sea
water from the fjord (3 °C) for 2 to 6 d, before start of the experiment. In the case of Nephtys
ciliata, a thin layer of sieved (1 mm ©) sediment from the original sampling area was also

included. Animals were not fed during acclimatization.

Temperate species were kept in glass aquaria with aerated filtered (0.2 um) sea water for 5 d
and were fed once with spiked ground fish food (TetraMin) suspended in deionised water at
the start of the acclimatization. In order to have sufficient food supply, 10 mg of dry food for
A. virens and 3 mg (shell length > 15 mm) or 1.5 mg (shell length < 15 mm) for L. balthica

was added per individual.
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Water quality variables such as pH, dissolved oxygen, salinity and temperature were

measured every two days during exposure time (Tables S7 and S8).

Sediment collection

A moderately contaminated sub-toxic marine sediment was prepared by mixing a non-

contaminated ‘clean’ sediment with a naturally contaminated harbour sediment. Batches of

muddy sediment (132 L) and coarse sediment (176 L) were collected near Wissenkerke (The
Oosterchelde Natural Park, the Netherlands) at low tide between 24 and 25 April 2014 and 2
May 2014. Coarse sediment was sieved in the field with a 1-mm sieve whereas muddy

sediment was sieved at laboratory inside a 1-mm sieve with some filtered sea water (0.2 um).

Once sieved both samples were stored at 3 °C.

A batch of harbour sediment (30 L) was collected near Rotterdam Nesserdijk by Nautisch
Service Centrum (Rotterdam, the Netherlands) in mid-April 2014 and sieved with a 1-mm
sieve on 1 May 2014. A subsample of the sieved wet harbour sediment (800 mL) was sent to
Wageningen Marine Research laboratories (IJmuiden, the Netherlands) for further chemical

analyses.

Test species

Arctic experiment. A. borealis, M. calcarea, N. pernula and N. ciliata were obtained as
described in the field sampling section. 4. borealis randomly selected healthy individuals with
an average and standard deviation (SD) shell length of 31.30 (4.63) mm and wet wt. (flesh) of
7.47 (4.16) g were used. N. pernula randomly selected healthy individuals with an average
(SD) shell length of 14.60 (3.66) mm and accumulated (n = 16 — 17) wet wt. (flesh) of 7.38
(1.65) g were used. As for M. calcarea and N. ciliata, we did not measure any morphological
parameters due to the scarcity of individuals. Animals were not fed during the

acclimatization, neither during the exposure experiments.

Temperate experiment. L. balthica and A. virens were obtained as described in the field
sampling section. L. balthica randomly selected healthy individuals with an average (SD)
shell length of 13.49 (2.46) mm and wet wt. (shell + flesh) of 0.47 (0.31) g were used. 4.
virens randomly selected healthy individuals with an average (SD) length of 10.83 (1.70) cm
and wet wt. of 2.75 (0.98) g were used. Animals were fed once at the beginning of the

acclimatization.
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Chemical analysis

Subsamples of each sediment sample were analyzed for weight percentages of organic matter
(OM) content, measured as loss on ignition (550 °C, 3 h). Biota lipids were extracted with

chloroform:methanol:water and quantified gravimetrically.

Frozen sediment samples were thawed at room temperature. Frozen pooled biota samples
were thawed at room temperature and subdivided into replicates of equal weight before
drying. Sediment subsamples and biota replicates were dried and grinded with diatomaceous
earth and Soxhlet-extracted for 40 min with hexane:acetone (3:1, v/v) (DionexASE 350
System, Thermo Scientific). Extracts were cleaned-up over an Al2O3 column and used for
polycyclic aromatic hydrocarbons (PAHs) analysis, which was carried out on an HP 1100
HPLC equipped with a 4.6 mm Vydac guard and analytical reverse phase C18 column
(201GD54T and 201TP54, respectively) which were kept at 22.00 °C. Detection was
performed by an HP 1100 multi-wavelength fluorescence detector operating in the multi-
emission wavelength mode. The mobile phase consisted of methanol/water (mixture and flow

gradient). The injection volume was 20 pL.
Bioaccumulation modelling
Bioaccumulation modelling was used to link observed bioaccumulation with species-specific

traits. Bioaccumulation in invertebrate lipids was modelled according to Diepens et al. [56]

and is briefly described here:

kexK”p+
Cr o B <SED axIxX[B+(1-B)xy] B
msar -t x e+ (1o ey o

in which C,i=o (ug x kg!) is the measured concentration in the biota at time zero, normalised
to lipid content, C§E§=0 (ug x kg!) is the measured concentration in sediment at time zero,
normalised to OC content,  (d) is time, k. and k. (d™!) are the rate constants for overall
elimination and growth dilution, Kj; is the ratio k./ke which equates to an apparent lipid-water
partition coefficient, and k. the rate constant for dermal uptake (L x kg!' x d!), & (-) is the
chemical assimilation efficiency (assumed to be independent of food source) and 7 (> 0, kgoc
x kgrip x d!) represents the mass of OC ingested per unit of time and organism lipid weight,

(0 <p <1) is the fraction of ingested OC originating from the sediment whereas 1 — 8 is the

fraction of ingested OC originating from the suspended and freshly deposited (sediment top
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layer) solids and y is a constant ratio between the sorption affinities for suspended OC and
sediment OC (K55 = yK5EP). The ingested OC thus is assumed to originate partly from
suspended solids (SS) from the overlying water and partly from the sediment (SED).
Ingestion of multiple food items by benthic invertebrates has been modelled in a similar

manner [56,80,83]. A detailed explanation of Eq. S1 is provided below.

The percentage of uptake through water is calculated based on Eq. S1 as:

ke
ke+ allB+ (1— B)YIKSEP /K iy

%WaterUptake = (S2)

The fraction of steady state reached (Fss, 0 < Fss< 1) in the bioaccumulation test (z =28 d)

was calculated as:
Fog =1 — e~ (ketkgt (S3)

Model parametrization

Eq. S1 was implemented in Microsoft Excel and the model was fitted to the log-transformed
experimental BSAF data using the Excel Solver tool with scaling of parameters and a relative
least-squares criterion. The first term in Eq. S1 (CL,/=0) is omitted when concentrations in @
organism lipids at time zero are below limit of detection. The sediment OC-water partition
coefficient K35P was assumed proportional to LogKoy: LogKSE? = LogKyy, + b [241,242].
The parameter k, could be obtained from either soft tissue weight differences between ¢ =28 d
and ¢ =0 d for 4. borealis (0.032), N. pernula (0.001), L. balthica (-0.001) and A. virens (-
0.019), or estimated from previously calculated yearly growth rates (mm/year) [56,243] for

M. calcarea (0.002) and N. ciliata (-0.001). The parameters k., 7, § and y were estimated using
a two-stage iterative approach [83]. First, the chemical sorption parameters b and y were set at
default literature values [175,241,242], and the species-specific parameters a, [ (constrained: /
>0) and £ (constrained: 0 < < 1) were optimized for each species separately by minimizing
their individual sum of squares. Subsequently, the parameters b and y were optimized by
minimizing the total sum of squares, after which the parameters a, I and S were fitted again
for each of the species. This procedure was repeated until all minimum sums of squares had

been reached.

Confidence intervals (90% CIs) were calculated according to Draper and Smith [244]:
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SS90 = SSimin <1 + (nzip)F(p,n -p, 90%)> (S4)

in which SSo is the sum of squares at the 90% confidence contour, SSyi, is the minimum sum
of squares, 7 is the number of BSAF measurements (n = 479), p is the number of estimated
parameters (p = 19) and F (p, n-p, 90%) is the F-distribution according to Fisher. Confidence
intervals were estimated using n, p and F either for the whole data set for the general
parameters or the species-specific data set. Negative confidence limits for 7 were set to zero.
Since the present experiments did not identify a difference in sorption to suspended OC and
sediment OC (i.e., K55 = K3EP), the fraction of ingested sediment (), was set at one. An

overview of all model parameters is provided as Table S9.
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Table S8. Mean water quality parameters in the temperate experiment H treatment aquaria.

Limecola balthica - BSH Alitta virens - PSH
Day pH D.O.(%) D.O.(mg/L) Salinity(g/L) T(C) | pH D.O.(%) D.O.(mg/L) Salinity (g/L) T (°C)
1 8.2 83.8 6.6 32.8 17.8 8.1 79.4 6.2 33.8 18.1
2 n.a. 80.3 6.3 n.a. 17.8 n.a. 719 6.1 n.a. 18.1
3 n.a. 79.3 6.2 n.a. 17.7 n.a. 753 59 n.a. 17.9
4 8.2 80.8 6.2 333 18.0 8.1 76.7 59 34.4 18.2
5 8.2 82.0 6.4 335 18.1 8.2 78.9 6.1 34.0 18.2
6 8.2 82.2 6.4 33.6 17.9 8.2 80.7 6.2 345 18.0
7 83 84.2 6.5 34.1 17.8 8.2 80.9 6.2 352 18.0
8 8.2 84.2 6.5 345 17.8 8.2 81.6 6.3 35.1 18.0
9 83 86.0 6.6 34.7 18.1 8.2 79.7 6.0 355 18.3
10 83 85.2 6.6 35.0 17.9 8.2 82.1 6.3 34.8 18.0
11 83 85.3 6.6 354 17.9 8.2 82.4 6.3 352 18.0
12 83 84.5 6.5 35.7 17.9 8.2 81.4 6.2 35.7 17.9

BSH: High Bivalves Sediment containing 10% (vol.) of harbour sediment; PSH: High Polychaetes Sediment

containing 10% (vol.) of harbour sediment; D.O.: dissolved oxygen; n.a.: not available.
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Chapter 3
Table S9. Parameters for the biota-sediment accumulation factor model.

Parameter Symbol Unit
Affinity of chemical partitioning to peat in the relation b )
LogK3E? = LogKyyw +b
Biota-sediment accumulation factor BSAF, -
Chemical assimilation efficiency o -
Concentration in invertebrate lipids Cr ug x kg'! lipids
Concentration in water Cy pg x Lt
Concentration in sediment csEP ug x kg' OC
Concentration in suspended solids css pg x kg OC
Constant ratio between sorption affinities for suspended OC and sediment OC
in the relation y -
K% = Y
Dermal uptake rate constant Fk L xkg'xd!
Elimination rate constant ke d!

o
Food ingestion rate 1 kgoc E%L’P'ds .
Fraction of ingested OC originating from the sediment (0<8<1)
Growth rate constant ke d!
Lipid water partition coefficient (k,,/k,) Kiip L x kg'!
Sediment water partition coefficient K5EP L x kg'!
Species-specific elimination parameter in the relation a .
LogK, = —LogK,, +a
Suspended solids water partition coefficient K38 L x kg
Time t d

Ariadna Szczybelski Thesis Headers.indd 95

95

26-09-18 09:23:29



Chapter 3

Table S10. Astarte borealis background polycyclic aromatic hydrocarbons (PAHs) concentrations

(mean + SD; pg/kg lipid wt.).

PAH 2013 2014
PHE 193.52+169.41  2708.86 + 341.85
ANT 45.25+93.27 664.10 £ 91.68
FLT 96.07 £ 67.43 385.65 + 80.61
PYR 297.78 £198.32 313.13 £30.09
BaA 18.78 £21.82 n.a.
CHR 106.90 +74.79  4614.76 + 5290.49
BeP 96.95 + 56.92 245.85 +32.57
BbF 58.61 £32.37 62.18 + 14.44
BKF 34.57+25.36 n.a.
BaP 14.56 = 19.59 n.a.
BghiP 23.65 +30.32 393.05 +616.28
dBahA 13.09 +21.49 n.a.
Ind123P 75.70 £ 68.40 56.89 +39.89
Y13PAH  1075.43 +684.05 9444.47 + 653791

*Individuals collected in July 2013 by Szczybelski et al. (Chapter 2) belong to size classes 2 to 4 as described
by the authors (36 to > 40 mm shell length), whereas individuals from 2014 collected by the present study
averaged 31.3 +4.63 mm (shell length). Both groups were collected in different sampling years near
Blomstrandhalveya, Kongsfjorden Bay (Svalbard, Norway).

n.a.: not available.

Table S11. High treatment (BSH) polycyclic aromatic hydrocarbons biota-sediment accumulation
factors (BSAFs) percentile ranges for Arctic (Astarte borealis, Macoma calcarea and Nuculana
pernula) and temperate (Limecola balthica) bivalves.

Spp. Astarte borealis  Macoma calcarea  Limecola balthica  Nuculana pernula
BSAF percentile 10th 90th 10th 90th 10th 90th 10th 90th
PHE 0.43 1.13 0.18 0.21 0.10 0.13 0.14 0.16
ANT 0.34 0.72 0.12 0.14 0.03 0.07 0.08 0.12
FLT 0.16 0.50 0.11 0.17 0.07 0.09 0.07 0.09
PYR 0.17 0.51 0.11 0.18 0.13 0.19 0.08 0.10
BaA 0.03 0.08 0.04 0.07 0.13 0.15 0.09 0.10
CHR 0.13 0.88 0.06 0.08 0.31 1.67 2.57 16.64
BeP 0.04 0.18 0.04 0.07 0.09 0.11 0.11 0.14
BbF 0.03 0.08 0.03 0.06 0.10 0.13 0.09 0.12
BghiP 0.04 0.36 0.01 0.12 0.23 2.36 0.83 2.94
dBahA 0.02 0.05 0.03 0.05 0.02 0.11 0.03 0.10
Ind123P 0.02 0.04 0.02 0.03 0.03 0.08 0.06 0.08
96
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Table S12. High treatment (PSH) polycyclic aromatic hydrocarbons biota-sediment accumulation
factors (BSAFs) percentile ranges for Arctic (Nephtys ciliata) and temperate (Alitta virens)

polychaetes.
Spp. Nephtys ciliata ~ Alitta virens
BSAF percentile 10th 90th  10th  90th
PHE 0.09 019 0.03 025
ANT 0.03  0.07 0.01 0.04
FLT 0.13 020 0.04 0.13
PYR 0.13 022 0.03 0.11
BaA 0.01 0.03  0.00 0.01
CHR 0.03 123 0.02 0.16
BeP 0.03  0.05 0.01 0.03
BbF 0.01 0.02 0.00 0.01
BghiP 0.13 1.70  0.01 0.10
dBahA 0.03  0.05 0.01 0.02
Ind123P 0.01 0.03 0.00 0.01

Table S13. Statistical test for differences in lipid-normalised polycyclic aromatic hydrocarbons
concentrations between Arctic species exposed to the high treatment (Kruskal Wallis test p-value).

Spp. PHE | ANT | FLT | PYR | CHR @ BeP BbF
Macoma calcarea @
Nephtys ciliata
Astarte borealis 0.110 | 0.046 | 0.088 | 0.080
Nuculana pernula 0.091 | 0.075 | 0.054
97
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Table S14. Statistical test for differences in lipid-normalised polycyclic aromatic hydrocarbons
concentrations between Arctic bivalve species exposed to the high treatment (Kruskal Wallis test p-
value).

Spp. PHE | ANT | FLT | PYR | CHR | Ind123P

Macoma calcarea
Astarte borealis 0.095 | 0.105 | 0.095 | 0.105
Nuculana pernula 0.069 0.069

Table S15. Statistical test for differences in biota-sediment accumulation factors of polycyclic
aromatic hydrocarbons between Arctic species exposed to the high treatment (Kruskal Wallis test p-

value).
Spp. PHE | ANT | FLT | PYR | CHR | BbF
Macoma calcarea
Nephtys ciliata
Astarte borealis 0.068 | 0.037 | 0.103 | 0.103
Nuculana pernula 0.103 | 0.054

Table S16. Statistical test for differences in biota-sediment accumulation factors of polycyclic
aromatic hydrocarbons between Arctic bivalve species exposed to the high treatment (Kruskal Wallis
test p-value).

Spp. PHE | ANT | FLT | PYR | CHR | Ind123P

Macoma calcarea
Astarte borealis 0.069 | 0.069 | 0.107 | 0.107
Nuculana pernula 0.069 | 0.107

98

Ariadna Szczybelski Thesis Headers.indd 98 @

26-09-18 09:23:32



Chapter 3

"DO1YIIPq D]O2UIT (T SUAIA DIITF AV
‘($100°0 > d) pardde st speorwoyo Suowe suostredwos parred o[qissod Jo Joqunu oy} UO Paseq UOIOLI0I TUoLRJuUOg [enuanbas s wjoH 1oye onfea-d Juedjiusis ,

. . . . . . . . 1o 98¢ | ¢ 41
9%°0- ¥9°'1- 120 SO'1- 800°0 ¥ | 067 6C0 LY'1 - - dE€TIPU

81°0 181 € AV

. . . . . . . . 600 | 66C € 41
cro- STI- 0T0 69°0- 0€0'0 ¥ | 9¢¢e 0¥'0 88°0 - - vyegp

810 | 0€C | € AV

. . . . . . . . 90°0 [ S |
SO'I- wl- L00 YTl 2000°0 ¥ | LTSI 10 137483 - - d9d

€00 60T | £ AV

. . . . . . . . 80°0 Ive € 41
910~ €01~ 010 yL0- 2000 v | €TL- 6¥'0 LSO - - 424

900 | L9T | € AV

. . . . . . . . 900 |8¢¢ €  4d1
- £€9'1- 600 LET- 20000 v | eryl- 980 €00 - - ved

L00 10T | € | AV

. . L00 | 09¢ € 41
200~ 650" 010 1€0- 0¥0°0 ¥ | 00°¢- 001 000 ——— HAd

L00 | 0€E € AV

. L00 Sv'e € 49l
1€°0 Y0~ 010 €00 8¥L'0 ¥ | S0 980 ¥0°0 — LT14

LO0 | 6V'E | € AV

. . . . . . . . LO00 | ¥ST € 41
200~ LO1- 610 §S0- S¥0°0 ¥ | 88°C o 16°¢ — LNV

810 | 661 € AV
J1oddn JOMOT (porrey o uedN | N HVd

QOUAIAJJIP QOUAIYJIP : . qs
as e 0w ! 31s d
QOUIIYIP 315 sonspe)s dnoan
AU} JO [BAISIUI SDUIPIJUOD % GG R
sueaw Jo Ajjenba 10§ 159! $aouBLIEA JO Ajpenbo
JO A 35911 10§ 1S9} S,QUAAY]

*(359 7 Juapuadopur) uoneuojsuel) Sof Joye Juswean) Y31y oy 0} pasodxad

sa109ds 9re10dwo) UGaM)dq SUONEIIUAOU0D (SHYJ) SUOGIBIOIPAT d1ewore J1[oAdAT0d PasIeuriou-prdi] Ul SOOUQIQJIP I0J 1591 [BINSHRIS LTS d[qeL

99

26-09-18 09:23:33

Ariadna Szczybelski Thesis Headers.indd 99



Chapter 3

Table S18. Statistical test for differences in biota-sediment accumulation factors of polycyclic
aromatic hydrocarbons between temperate species exposed to the high treatment (Mann Whitney U

test p-value).

Spp. ANT

PYR

BaA | BeP | BbF | dBahA

Ind123P

Limecola balthica | 0.050

0.050

0.050 | 0.050 | 0.050 | 0.050

0.050

Alitta virens

Table S19. Statistical test for differences in lipid-normalised polycyclic aromatic hydrocarbons
concentrations between Arctic and temperate species (Mann Whitney U test p-value) based on input
data from Tables S5 and S6.

Spp. PHE | ANT | BaA | CHR | BeP BbF | BghiP | dBahA | Ind123P
Macoma calcarea | 0.083 | 0.083
Limecola balthica 0.083 | 0.083 | 0.083 | 0.083 | 0.083 | 0.083 | 0.083
Nephtys ciliata 0.827 | 0.127 | 0.127 0.127 | 0.050
. ; n.t. n.t. n.t. n.t.
Alitta virens

n.t.: not tested.

Table S20. Statistical test for differences in biota-sediment accumulation factors of polycyclic
aromatic hydrocarbons between Arctic and temperate species exposed to the high treatment (Mann
Whitney U test p-value) based on input data from Tables S11 and S12.

Spp. PHE | ANT | FLT | PYR | BaA | CHR | BeP BbF | BghiP | dBahA | Ind123P

Macoma calcarea | 0.083 | 0.083 | 0.083

Limecola balthica 1.000 | 0.083 | 0.083 | 0.083 | 0.083 | 0.083 | 0.248 0.083
Nephtys ciliata 0.827 | 0.127 | 0.050 | 0.050 | 0.050 0.050 | 0.050

. . n.t. n.t. n.t. n.t.
Alitta virens
n.t.: not tested.
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Figure S1. Preparation of Bivalves Reference Sediment (BRS) and Polychaetes Reference Sediment
(PRS) from both muddy (MS) and coarse (PS) sediment.

BSH (10% HS)

PSH (10% HS)

BRS: Bivalves Reference Sediment; BSL: Low Bivalves Sediment containing background levels of
contaminants; BSM: Medium Bivalves Sediment containing 5% (vol.) of harbour sediment (HS);
BSH: High Bivalves Sediment containing 10% (vol.) of harbour sediment (HS); PSL: Low
Polychaetes Sediment containing background levels of contaminants; PSM: Medium Polychaetes
Sediment containing 5% (vol.) of harbour sediment (HS); PSH: High Polychaetes Sediment containing
10% (vol.) of harbour sediment (HS).

Astarte borealis Nuculana pernula Nephtys ciliata

* BSH (3x)
« Each replicz

ediment

18 ind. <20 mm
SL
*7ind. >20 mm SL

Figure S2. Arctic experiment (AE) replicates per species and treatment.

* BSH (2x)

« Each replicate
contains:
*2.5 L sediment

contains:
«2.5 L sediment
*25-40 ind.

*35-45 ind.

* PSL (1x)
* PSM (1x)
* PSH (3x)
« Each replicate

contains:
*2.5 L sediment
+10-14 ind.

BSL: Low Bivalves Sediment containing background levels of contaminants; BSH: High Bivalves
Sediment containing 10% (vol.) of harbour sediment; PSL: Low Polychaetes Sediment containing
background levels of contaminants; PSM: Medium Polychaetes Sediment containing 5% (vol.) of
harbour sediment; PSH: High Polychaetes Sediment containing 10% (vol.) of harbour sediment; SL:
shell length; ind.: number of individuals.
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§ )

Limecola balthica . .
Alitta virens

«BSL (1x)

. 2%
« BSH (3x) PSL 29

* PSM (2x)
* PSH (3x)
» Each replicate contains:

sediment

Figure S3. Temperate experiment (TE) replicates per species and treatment.

BSL: Low Bivalves Sediment containing background levels of contaminants; BSH: High Bivalves
Sediment containing 10% (vol.) of harbour sediment; PSL: Low Polychaetes Sediment containing
background levels of contaminants; PSM: Medium Polychaetes Sediment containing 5% (vol.) of
harbour sediment; PSH: High Polychaetes Sediment containing 10% (vol.) of harbour sediment; ind.:
number of individuals.
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Figure S4. Astarte borealis background polycyclic aromatic hydrocarbons (PAHs) concentrations
(mean + SD; pg/kg lipid wt.).

Individuals collected in July 2013 by Szczybelski et al. (Chapter 2) belong to size classes 2 to 4 as
described by the authors. Individuals were collected in different sampling years near
Blomstrandhalveya, Kongsfjorden Bay (Svalbard, Norway).
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Figure S5. Modelled polycyclic aromatic hydrocarbons biota-sediment accumulation factors (BSAFs)
(closed symbols) and actual measured BSAFs (open symbols) for Arctic (Macoma calcarea and
Nephtys ciliata) and temperate (Limecola balthica and Alitta virens) species exposed to the low
(BSL/PSL) and medium (PSM) treatments.
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4 Biomarker responses and biotransformation capacity in Arctic
and temperate benthic species exposed to polycyclic aromatic
hydrocarbons

Ariadna S. Szczybelski, Martine J. van den Heuvel-Greve, Albert A. Koelmans
& Nico W. van den Brink

Science of the Total Environment, submitted
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Abstract

Monitoring parameters for the assessment of oil and gas related contaminants and their
biological effects need validation before application in the Arctic. For such monitoring
purposes, we evaluated the potential use of three biomarkers (acetylcholinesterase, acyl-CoA
oxidase and glutathione S-transferase) for application to an Arctic bivalve (4starte borealis)
and determined the body residue of pyrene and two pyrene metabolites (1-hydroxypyrene and
pyrene-1-glucuronide) in Arctic benthic species (bivalve: Macoma calcarea; polychaete:
Nephtys ciliata) and temperate benthic species (bivalve: Limecola balthica; polychaete: Alitta
virens) in order to establish the potential of polycyclic aromatic hydrocarbons (PAHs)
metabolite profiles as biomarkers of exposure in such species. Experimental PAH exposure
levels were probably too low (0.2 — 1.7 mg/kg dry wt. in sediment) to induce or inhibit
biomarker responses in A. borealis. Concentrations of pyrene and pyrene metabolites varied
between species, although no consistent patterns could be established among taxonomic
groups and locations. Metabolites made up to 79% of the total pyrene concentrations
indicating that basal metabolic activity is affecting pyrene kinetics even at low concentrations
in all species. This indicates that Arctic and temperate species could show similar metabolism

patterns of PAHs, although more insight into the effects of confounding factors is needed.
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1. Introduction

Current baseline information on potential effects of oil and gas (O&Q) activities on the Arctic
ecosystem or ecosystem components is still inadequate or unavailable [72], particularly on the
cumulative effects of O&G related toxic compounds. More information is needed because the
retreat of sea ice in the Arctic will cause an increase in O&G related activities [14]. Hence,
further studies on assessing the vulnerability of Arctic biota to O&G related chemicals are

essential, in order to inform policy and to ensure that O&G risk assessment procedures are

targeted to the Arctic environment.

Polycyclic aromatic hydrocarbons (PAHs) are the main organic pollutants related to O&G
activities, which have been identified as an emerging concern in the Arctic [121]. Once
released into the marine environment, partitioning of PAHs to settling particulate organic
matter generally results in contamination of sediments and chronic exposure of benthic
organisms. Accumulation of PAHs by benthic organisms depends on several factors such as
the species’ feeding behavior, physiological responses to PAH exposure like detoxification
and excretion of PAHs [256], as well as sediment characteristics [80]. Biological responses
(biomarkers) to exposure to PAHs may be used as indicators of exposure to or sublethal @
ecological effects of O&G related activities, and the use of such biomarkers may provide an

early warning for hazard [257] and ecological risk assessment [86,258].

Studies have documented effects of oil at the cellular, individual and community level in
Arctic benthic communities [104,122,259,260], but they provide little information on the
specific chemicals in the complex oil matrix causing the effects. Although PAHs are the major
group of organic contaminants in oil, there is a large knowledge gap on their specific role in
affecting the responsiveness of biochemical biomarkers in Arctic benthos chronically exposed
to O&G derived chemicals [261]. Furthermore, almost no information on PAH metabolites in
benthic invertebrates is available that may be used to assess oil-derived hazards and risks for
Arctic benthic organisms [213]. In order to address these knowledge gaps the aims of the
present study were to (1) identify the responsiveness of biochemical biomarkers of exposure
and effects in Arctic benthic species, and to (2) assess the use of profiles of metabolites of a
model PAH (i.e., pyrene) for monitoring of exposure and effects in Arctic benthic
invertebrates. This was performed experimentally, using representative species of the Arctic
macrobenthic community (the suspension feeder Astarte borealis [Schumacher, 1817], the

suspension/deposit feeder Macoma calcarea [Gmelin, 1791] and the predator/deposit feeder
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Nephtys ciliata [O.F. Miiller, 1776]), which are compared to temperate counterpart species
(the suspension/deposit feeder Limecola balthica [Linnaeus, 1758] and the omnivore/deposit
feeder Alitta virens [Sars, 1835], formerly known as Macoma balthica and Nereis virens,

respectively).

Selected biomarkers of exposure were the peroxisomal S-oxidation enzyme acyl-CoA oxidase
(AOX, E.C.1.3.3.6) and Phase II biotransformation enzyme glutathione S-transferase (GST,
E.C.2.5.1.18). The biomarker of neurotoxicity consisted of acetylcholinesterase (AChE,
E.C.3.1.1.7). These were determined in 4. borealis, upon exposure to PAH-contaminated
sediment under laboratory conditions. In a second experiment, selected pyrene metabolites (1-
hydroxypyrene [OHPyr, Phase I metabolite, Figure 1] and pyrene-1-glucuronide [GluPyr,
Phase II metabolite, Figure 1]) were analyzed in Arctic (M. calcarea, N. ciliata) and
temperate (L. balthica, A. virens) bivalves and polychaetes exposed to PAH-contaminated
sediment under laboratory conditions. Due to limited availability of test animals it was not
feasible to analyze biochemical biomarkers and metabolite profiles in the same experiments.
In the first experiment, an Arctic species was selected for which ample information was
available on biomarker responses in similar temperate species. As for metabolite profiles,
much less information is available, so we conducted a broader experimental approach,

comparing species with different feeding modes and geographical origin.
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Pyrene

O‘ Oy OH

CYP450 * OH OH
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Figure 1. Biotransformation pathway for pyrene in Alitta virens (adapted from Jorgensen et
al. [183]). CYP450: cytochrome P450 enzymes; ST: sulfotransferase enzymes; UDPGT: @
glucuronosyltransferase enzymes. CYP450 forms Phase I metabolites, whereas ST and
UDPGT form Phase II metabolites.

2. Materials and Methods

2.1. Test organisms

Based on their feeding habits, sessility and relative abundance in Kongsfjorden Bay
(Svalbard, Norway), three Arctic benthic species were selected: the suspension feeder A4.
borealis, the suspension/deposit feeder M. calcarea, and the carnivore/omnivore N. ciliata.
Additionally, two counterpart temperate species (the suspension/deposit feeder L. balthica
and the deposit feeder/omnivore A. virens) were selected based on their comparable habitat
and feeding traits with Arctic species. Permission for sampling of Arctic and temperate (L.
balthica) species was issued by The Governor of Svalbard and the Province of Zeeland,

respectively. 4. virens was obtained from a professional bait farm, Topsy baits
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(Wilhelminadorp, the Netherlands). For details of the sampling and acclimatization of test

species and sediment collection, the reader is referred to the Supporting Information (SI).

2.2. Sediment treatments preparation

Reference sediment was collected in the Oosterschelde estuary (The Netherlands, 51°36'13"N,
3°47'49"E) on 24 to 25 April 2014 and 2 May 2014, and naturally contaminated sediment was
collected near Nesserdijk (Rotterdam, the Netherlands, 51°54'14"N, 4°31'17"E) by Nautisch
Service Centrum in April 2014. Two different batches of reference sediment were prepared to
ensure an optimal habitat for the test species. Since the bivalve species (4. borealis, M.
calcarea and L. balthica) usually reside in sandy sediment, their sediment batch consisted of
two thirds of coarse and one third of muddy sediment, based on volume. N. ciliata and A.
virens are generally found in sandy mud, so a sediment batch consisting of two thirds of

muddy and one third of coarse sediment was prepared for these species.

The reference sediments are referred to as the ‘low’ (L) treatment: BSL (Bivalve Sediment
Low for bivalves) and PSL (Polychaete Sediment Low for polychaetes). Two additional
sediment treatments were prepared with a higher amount of harbour sediment increasing the
chemical concentrations, referred to as ‘medium’ (BSM and PSM with 5% harbour sediment)
and ‘high’ (BSH and PSH with 10% harbour sediment) treatments. These preparations thus
resulted in six sediments: three for bivalves (BSL, BSM, BSH) and three for polychaetes
(PSL, PSM, PSH) (Tables S5 and S6).

All sediment treatments were thoroughly mixed before storage and transport from the
Netherlands to Svalbard, before use in the exposure experiments. Due to logistics, storage
time (at 3 — 7 °C) for sediment treatments was 8 and 17 weeks in the temperate and Arctic
experiment, respectively. Prior to the start of exposure, sediment was allowed to settle in
contact with filtered sea water in a 1:6 sediment-to-water volume ratio without aeration during
3 d and with aeration during the following 4 d. In the Arctic experiment some aquaria were

aerated for 7 to 14 d because biota field sampling took longer than initially expected.

> 13PAH concentrations in the high (H) treatment were selected to be above or within average
sediment X16PAH concentration detected in Arctic oil-impacted areas like Ny-Alesund
harbour (Svalbard, Norway) [149], and Gulf of Alaska (USA) after 4 and 13 years of the
Exxon Valdez oil spill [262] (Table 1).
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Table 1. Total polycyclic aromatic hydrocarbons (PAHs) concentrations (min-max; pg/kg dry
wt.) in sediment and biota (soft tissue) available in the literature.

Total PAH

Present study® Analytes (No. of compounds) Sediment Biota
BSL 219-322 n.a.
BSM n.a. n.a.
Treatment BSH 3-to 6-ring PAHs (13)  839-2780 446 — 1878
PSL 1130-1489 249 -264
PSH 2125-2437 147-1183

Payne et al. [262]°

Gold Creek ~50 ~600

2-to 6-ring PAHs and selected

1993 Alyeska Marine Terminal alkylated homologues (44)

Disk Island

20-300 300 -400
1830¢ ~200

Payne et al. [262]°

2- to 6-ring PAHs and selected

1993-2002 Gold Creek alkylated homologues (44) 40-125  100-800
Van den Heuvel-Greve et al. [149]

Kongsfjorden . 1-26 n.a.
2012-2013 Ny-Alesund 3-to 6-ring PAHs (16) 476 — 2550 na

*Sediment and A. borealis samples from the Arctic experiment.

®Sediment and Mytilus trossulus samples.

¢ Sediment samples from Boehm et al. [263].

BSL: Low Bivalve Sediment; BSH: High Bivalve Sediment; PSL: Low Polychaete Sediment; PSM: Medium
Polychaete Sediment; PSH: High Polychaete Sediment; n.a.: not available.

2.3. Experimental design @&

Two 28-d exposure experiments were conducted: a first with Arctic species and conditions at
Kings Bay AS (Ny-Alesund, Svalbard) (September to October 2014); and another with
temperate species and conditions at Wageningen Marine Research (Yerseke, the Netherlands)
(July to August 2014). The Arctic experiment was performed in a temperature controlled
room (3+1 °C) with a photoperiod of 12 h light: 12 h dark, whereas the temperate experiment
was performed in a temperature controlled room (1841 °C) with a photoperiod of 18 h light: 6
h dark.

Exposure treatments were achieved in quadruplicate or more for A. borealis (BSL, BSM and
BSH), whereas for the rest of the test species, these were achieved in duplicate or more due to
low availability of test organisms (Table S1). For 4. borealis, each aquarium contained 25
individuals of which 18 individuals were classified as ‘small’ (<2 cm) and 7 individuals were
classified as ‘large’ (2 — 4 cm), based on shell length. For M. calcarea, L. balthica, N. ciliata
and 4. virens, each aquarium contained 40 to 50, 50, 20 and 16 individuals, respectively

(Table S1). Individuals were not fed during exposure.
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No mortality was observed for any species in any treatment. At the end of the experiments,
organisms were allowed to depurate their guts for 24 h in filtered sea water. Animals were
weighed, measured for body or shell length, dissected (e.g., bivalves), snap-frozen and stored
at -80 °C for the determination of enzymatic activities in 4. borealis samples or at -20 °C for
the analysis of pyrene and pyrene metabolites in Arctic (M. calcarea, N. ciliata) and

temperate (L. balthica, A. virens) species.

A. borealis samples were shipped in a dry-shipper in liquid nitrogen (Arctic Express 20,
Thermo Fisher Scientific) to Plentzia Marine Station (University of the Basque Country) at
Plentzia (Biscay, Spain), while the remaining samples were shipped in dry-ice to the
Department of Analytical Chemistry (University of the Basque Country) at Leioa (Biscay,
Spain).

2.4. Chemicals

2'7"-dichlorofluorescin diacetate (DCF), N,N-dimethylformamide (DMF), palmitoyl
coenzyme A lithium salt, peroxidase from horseradish, sodium azide, Triton™ X-100 and
ethylenediaminetetraacetic acid disodium salt dihydrate (EDTA-Nz) (Sigma-Aldrich) were
used for the determination of AOX activity. Butylated hydroxytoluene (BHT),
acetylthiocholine iodide (ATC), 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) (Sigma-Aldrich)
and sodium bicarbonate (VWR) were used for the determination of AChE activity. 1-chloro-
2,4-dinitrobenzene (CDNB) and L-glutathione reduced (GSH) (Sigma-Aldrich) were used for
the determination of GST activity. Quick Start™ Bradford Kit 4 (Bio-Rad) was used for

protein determination.

Pyrene (98%), 1-hydroxypyrene (98%) (Sigma-Aldrich), pyrenyl-1-O-glucuronide (98.2%)
(Isostandards Material), acetone, methanol, acetonitrile (HPLC grade) (Macrom Fine
Chemicals), 0.45 pm polyamide filters (Macherey-Nagel) and Oasis HLB (200 mg) cartridges

(Waters) were used for the determination of pyrene metabolites.

2.5. Enzymatic activities

Pooled digestive glands of either 9 ‘small’ or 3 ‘large’ A. borealis individuals were
homogenized in 1:5 volumes of 100 mM potassium phosphate buffer (pH 7.4) in a tissue
homogenizer (Precellys®24, Bertin Technologies) at 6,000 rpm x 30 s (5 °C). Homogenates

for AOX determination were obtained after a centrifugation of the homogenate at 500 g x 15
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min (4 °C) (Allegra® 25R Benchtop Centrifuge, Beckman Coulter). 100 pL of supernatant
was used for AOX determination whereas the remaining volume was centrifuged at 13,280 g
x 20 min (4 °C) (Microfuge® 22R Microcentrifuge, Beckman Coulter) to obtain the post-
mitochondrial fraction (S12) in the supernatant for further biochemical determinations of
AChHE and GST activities. Samples were stored at -80 °C if not directly used. All assays were
carried out in quadruplicate per sample at 22 °C (AChE, GST) or in duplicate at 25 °C (AOX).

AOX activity was analyzed in A. borealis 1:4 500 g homogenates following Small et al. [264].

AChE activity was analyzed in A. borealis S12 homogenates following Guilhermino et al.

[265]. GST activity was analyzed in S12 homogenates following Habig et al. [266] with some
modifications (i.e., reaction medium is 100 mM potassium phosphate buffer pH 7.4). AChE
and GST activity rates were recorded in 96-well Sterilin™ Clear Microtiter™ plates (Thermo
Fisher Scientific) at 412 and 340 nm every 60 s during 5 and 3 min, respectively (PowerWave
HT Microplate Spectrophotometer, BioTek). Total cytosolic protein was measured in the
same homogenate fraction where enzymatic activities were analyzed following Lowry et al.

[267].

2.6. Pyrene metabolites

Samples were frozen and freeze-dried prior to the extraction step. Each sample was weighed
and extracted in 10 mL of acetone in a 40 mL polypropylene vessel. Focused ultrasound solid-
liquid extraction (FUSLE) was performed in the pulsed mode for 2 min, with a pulsed time
‘on’ of 0.8 s and pulsed time ‘off” of 0.2 s, at 20% of irradiation power [268]. Extractions
were performed at 0 °C in an ice-water bath [269]. After the extraction step, the supernatant
was filtered through 0.45 pm poliamide filters and evaporated to 500 uL under a nitrogen
stream at 35 °C using a Turbovap LV evaporator (Zymark).

200-mg Oasis HLB cartridges were conditioned with 10 mL of Milli-Q:acetonitrile (1:9, v/v).
Then, the sample was loaded and 1 mL of Milli-Q water was added and cartridges were dried
for an hour under vacuum. Then, the analytes were eluted using 10 mL of acetonitrile and
collected in a test tube. The eluate was evaporated until dryness under a gentle stream of
nitrogen at 35 °C and reconstituted in 150 pL of methanol. Finally, the analyses of pyrene
metabolites were performed by high-performance liquid chromatograph with fluorescence
detector (HPLC-FLD). For further details on the extraction, clean-up and instrumental

analysis see the SI.

115

Ariadna Szczybelski Thesis Headers.indd 115 @ 26-09-18 09:23:45



Chapter 4
2.7. Data analyses

Data were checked for normality with Q-Q plots and the Shapiro-Wilk test and for equality of
variances with Levene’s test. Differences among treatment groups were assessed either by
one-way ANOVA and Tukey HSD as a post-hoc test in case of normally distributed data, or
by the Kruskal-Wallis non-parametric rank test for each of the biomarkers in A. borealis. For
each taxonomic group (i.e., bivalves and polychaetes), differences in the content of GluPyr
among L and H treatment groups and among climatic groups were analyzed by either
ANCOVA, or multiple linear regression, respectively. For the ANCOVA test the content of
pyrene (Pyr) was used as the covariate and for multiple linear regression the treatment group
and source region of the species were used as predictors. A simple linear regression between
Pyr and GluPyr concentration was also calculated for each of the species. The simple linear
regression was used to analyze any likely difference in GluPyr/Pyr ratios among species.
Significance level of an overall statistical comparison was set at p < 0.05, while for pairwise
comparisons a Bonferroni correction was applied. All statistical calculations were performed

using SPSS version 22.

3. Results and Discussion

3.1. Enzymatic activities

Exposure to the selected £13PAH concentration range (i.e., 287 — 1710 pg/kg dry wt.
sediment; Table S5) had no significant effect on any biomarker response in 4. borealis
digestive gland (Tables 2, S11-S13). Nevertheless, AChE activity in BSH exposed 4. borealis
was relatively low and within the range as detected in mussels from either historically
polluted areas [270] or transplanted to harbour areas [271], indicating a potential neurotoxic
response. Examples of classical AChE inhibitors are organophosphate and carbamate
pesticides, although PAHs may also show AChE inhibition capacity [270,272]. However, low
AChE activity could also be due to either a low AChE substrate specificity in digestive gland
with respect to gills as observed in scallops [273] or a stressed physiological status in 4.

borealis as observed in caged mussels [274].

The absence of AChE inhibition in 4. borealis is also in line with the lack of GST and AOX
induction (Table 2). GST activity in A. borealis was below baseline levels as detected in

digestive gland of scallops (Chlamys islandica) [215,275] and slightly lower than those in
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mussels (Mytilus galloprovincialis) experimentally exposed to similar PAH concentrations
(Table 3; [276]). GST activity is mainly correlated to the concentration of 5- to 6-ring PAHs
in mussels [277]. Yet, higher concentrations of high-molecular-weight PAHs in BSH exposed
A. borealis compared to sediment PAH exposed M. galloprovincialis yielded lower GST
activity values in 4. borealis than in mussels [276]. Furthermore, a negative correlation was
observed between GST activity rates in M. galloprovincialis and sediment PAH exposure
(Table 3; [276]). This indicates that even if lower-molecular-weight PAHs such as
phenanthrene, anthracene, fluoranthene and pyrene were mainly accumulated by A. borealis

during BSH exposure (Chapter 3), pointing to an absence of GST induction, likely

confounding factors such as the nutritional and reproductive state of 4. borealis could have

masked the bivalves’ response to organic pollution [278].

Table 2. Acyl-CoA oxidase, acetylcholinesterase and glutathione S-transferase activities
(mean = SD) in Astarte borealis digestive gland.

Treatment EA (n) AOX AChE GST

BSL 4 21+04 279+84 498+134

BSM 4 20£04 355+£42 478=+14.2

BSH 6 23+0.6 307144 46.7+11.2
EA: experimental aquarium; AOX: Acyl-CoA oxidase (mU AOX/mg prot.); AChE: Acetylcholinesterase @
(nmol/min/mg prot.); GST: Glutathione S-transferase (nmol/min/mg prot.). Additional abbreviations are defined

in Table 1.

AOX activity in all A. borealis pooled samples was above levels as detected in digestive gland
of mussels from or transplanted to harbour areas [279] and at O&G produced water discharge
points [280]. This indicates that AOX levels in the present study were high, even in the
controls (i.e., BSL exposed A. borealis). Relatively high AOX activity in 4. borealis may be
related to non-toxic factors like low food availability or changing metabolic status under post
bloom conditions [134]. Although AOX induction has been described as a rapid and
reversible response to PAH and PCB exposure [279,281], this process can also be affected by
seasonal changes [281]. AOX activity in mussels (M. galloprovincialis) is usually induced
during late winter and spring while AOX levels are negatively correlated with lipid content in
digestive tubules of mussels during phytoplankton blooms [282]. AOX may be further
induced in A. borealis due to the increased synthesis of prostaglandins during the species
spawning in early autumn [282,283]. Hence, nutritional and reproductive status impacts on
peroxisome proliferation should be considered as likely confounding factors when interpreting

AOX as a biomarker for exposure to environmental contaminants [281].
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Table 3. Total polycyclic aromatic hydrocarbon (PAH) concentrations in whole body soft
tissue and glutathione S-transferase activity in digestive gland of exposed bivalve species.

Total PAH
Snecies Analytes Whole body
Source (type 01; exposure) (No. of soft tissue GST
yp P compounds) (weight units)
Astarte borealis * 3- to 6-ring PAHs 170 (wet wt.) B
Present study (sediment) (13) 34830 (lipid wt.) 34-62
Chlamys islandica 0 (wet wt.) 475
(dispersed oil) 6 (wetwt) 333
Baussant et al. P 2-to 6-ring PAHs 8 (wet wt.) 425
[275] Mytilus edulis (16) 0 (wet wt.) 71
(dispersed oil) 3 (wet wt.) 62
10 (wet wt.) 85
Chlamys islandica ®
Nahrgang et al. (bakground) 2-to 6-ring PAHs <357 (wet wt.) 500800
[215] Mytilus edulis ® (16) _ _
(backeround) 5.7 -6.3 (wet wt.) 0-100
Giuliani et al. Mytilus L 2- to 6-ring PAHs 140 (dry wt.) 120
[276] galloprovincialis (15) 300 (dry wt.) 110
(sediment) 600 (dry wt.) 90

*A. borealis exposed to BSH treatment.
b Biota samples collected from the field in September 2010.
Whole body soft tissue (ng/kg); GST: Glutathione S-transferase (nmol/min/mg prot.).

In summary, we observed a general lack of dose related responses of the selected biomarkers
in digestive gland of A. borealis. This may indicate that exposure levels were too low to
induce such changes. However, within treatment variation in catalytic activity was rather
large, which prevented a sensitive analysis of dose response relationships, but for which
knowledge of possible confounding factors was lacking. Therefore, in order to interpret
variation in biomarker responses in Arctic marine invertebrates, relevant confounding
parameters should be identified such as time scales for enzymatic induction, conditions of the

assays, and maturation and nutritional status for field individuals.

3.2. Pyrene metabolites

Biotransformation and excretion of hydrophobic organic pollutants is mostly mediated by
CYP enzymes, although biotransformation capacity may be low in marine invertebrates [284].
Only a few studies showed the existence of the aryl hydrocarbon receptor (AHR) transcription
factor in marine invertebrates and suggested that the expression of Phase I enzymes through
AHR in response to hydrocarbon exposure might be tissue-specific in bivalves [285,286].
Additionally, relatively large differences in dominating Phase II biotransformation pathways
between invertebrates could yield different PAH metabolite patterns. In the present study,

GluPyr was selected as the major Phase Il metabolite because glucuronosyltransferases
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(UDPGTs) have a higher activity rate than sulfotransferases (STs), and also glucuronidation is
the main conjugation pathway in 4. virens (Figure 1). In the following subsections, pyrene
metabolites results are discussed based on the possibilities and limitations for an interspecies

comparison inherent in our selection of metabolites.

3.2.1. Pyrene hydroxylation

OHPyr concentrations were often below the limit of detection among all analyzed individuals

(Tables 4, S9 and S10). This agrees with typically low OHPyr/Pyr ratios found in other

freshwater [287] and marine worms [183,233], as well as in marine clams [288] due to
generally high Phase II biotransformation levels and/or low induction capacity of Phase I
biotransformation pathways in polychaetes and bivalves. Based on the species-specific
sediment threshold for 4. virens (i.e., 10 pg pyrene/g dry wt. [183]), an absence of pyrene
hydroxylase induction and therefore low OHPyr concentrations, would be expected in A.
virens exposed to PSH (i.e., 0.5 ug pyrene/g dry wt.). This is also expected in L. balthica

since its PAH biotransformation capacity is generally lower than 4. virens [139].

3.2.2. 1-hydroxypyrene glucuronidation

A significant effect of the high treatment (PSH) compared to the low sediment treatment
(PSL) was observed on the concentration of GluPyr in polychaetes (p = 0.005, Table S14).
This was not detected between BSH and BSL exposed bivalves (Table S15). Similarly, a
multiple linear regression on the concentration of GluPyr did generate a significant model for
polychaetes when both treatment and climatic groups were included as predictors (R?=0.466,

p <0.001, Table S16). This was not the case for bivalves (Table S17).

3.2.3. Biotransformation of pyrene among climatic groups

For polychaetes and bivalves different GluPyr/Pyr ratios were observed when comparing
Arctic and temperate species (Figures 2 and 3). GluPyr concentrations in the Arctic N. ciliata
were on average twice as high as in the temperate A. virens in both L and H treatments. This
agrees with higher pyrene concentrations in the former species (Figure 2) and a positive
correlation between pyrene and GluPyr concentrations in N. ciliata (R> = 0.252, p = 0.012),
but not in 4. virens (Tables S18 and S19). In H exposed A. virens, low GluPyr concentrations
may be due to too low pyrene concentrations in A. virens to lead to significant induction of

Phase I (e.g., pyrene hydroxylase) and thus, consecutive Phase II (UDPGT) biotransformation
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[233]. However, GluPyr/Pyr ratios in H exposed A. virens were on average 3.5 times higher
than in N. ciliata. This shows that biotransformation rates were limited among polychaete
species according to the low level of exposure (Table 4), although a higher induction of
CYP450 enzymes may be expected in 4. virens than N. ciliata possibly due to a stronger
bioactivity of PAHs and additional inducer chemicals, such as PBDEs (Table S4; [289]), in

the broad omnivore A. virens than in N. ciliata [136,235].

40
35
30
25
20
15
10

Alitta virens Nephtys ciliata

BPyr (ng/g ww) BGluPyr (ng/g ww) BSUMPyr

Figure 2. Concentrations of pyrene (Pyr; ng/g wet wt.), pyrene-1-glucuronide (GluPyr; ng/g
wet wt.) and the sum of both compounds (SUMPyr) in whole body tissue of temperate (Alitta
virens) and Arctic (Nephtys ciliata) polychaete species exposed to the low (L) and high (H)
sediment treatments.
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Figure 3. Concentrations of pyrene (Pyr; ng/g wet wt.), pyrene-1-glucuronide (GluPyr; ng/g
wet wt.) and the sum of both compounds (SUMPyr) in soft body tissue of temperate
(Limecola balthica) and Arctic (Macoma calcarea) bivalve species exposed to the low (L) and
high (H) sediment treatments.

Table 4. Pyrene, 1-hydroxypyrene and pyrene-1-glucuronide concentrations (geomean [min-
max]; ng/g wet wt.) in Arctic (Macoma calcarea, Nephtys ciliata) and temperate species
(Limecola balthica, Alitta virens).

Species Treatment Pyr OHPyr GluPyr

BSL  11.6 (RLOQ-36.4) 0.4 (LOD —2.98) 17.4 (LOD — 74.0)
BSH  11.8(<LOQ-26.7) 0.4 (<LOD —2.22) 12.1 (<LOQ — 50.7)
BSL 3.6(0.7-12.3)  0.5(<LOD-1.5) 7.8 (<LOD -34.7)
BSH 58(1.1-213) 0.6(<LOD-3.1) 7.1 (<LOQ —41.6)

Limecola balthica

Macoma calcarea

o PSL 1.7(05-54)  0.1(<LOD-15)  3.9(2.2-10.0)
Alitta virens

PSH 1.5(0.5-4.3) <LOD 6.7 (4.5-13.7)

PSL 59(2.0-155) 02(<LOD-0.9) 82 (4.1-20.9)

Nephtys ciliata
PSH 92(3.6-285) 03(<LOD-3.7) 11.4(64-222)
Pyr: Pyrene; OHPyr: 1-hydroxypyrene; GluPyr: pyrene-1-glucuronide; LOD: limit of detection; LOQ: limit of
quantification. Additional abbreviations are defined in Table 1.

Mean GluPyr concentrations in the temperate L. balthica were higher than in the Arctic M.
calcarea. This complies with higher pyrene concentrations in L. balthica than in M. calcarea
(Figure 3). In H exposed bivalves, pyrene concentrations were within the same range as
observed concentrations of another 4-ring PAH, chrysene, in scallops (Chlamys farreri) after
exposure to 0.1 pg/L (i.e., 35 — 45 ng chrysene/g dry wt. [290]). Within such range,
concentrations of chrysene in scallops did not reveal a significant correlation with 7-

ethoxyresorufin O-deethylase activity, which is the catalytic measurement of CYP450

121

Ariadna Szczybelski Thesis Headers.indd 121 @ 26-09-18 09:23:49



Chapter 4

induction. Absence of CYP induction would explain similar biotransformation rates between
L. balthica and M. calcarea (Figure 3), but it would not account for a seemingly decreasing
trend in GluPyr concentration with PAH exposure (Table 4). This stresses the importance of
considering different Phase II biotransformation pathways for the characterization and

comparison of pyrene metabolite patterns among bivalves [288,291].

In summary, pyrene metabolite patterns appeared to be similar among all target species after
exposure to PAHs in sediment at the different sediment treatment levels. However, GluPyr
yielded different concentration profiles between Arctic (N. ciliata) and temperate polychaetes
(A. virens) exposed to the high treatment, possibly related to a higher induction of CYP450
enzymes in 4. virens. Besides, the suitability of this metabolite as biomarker of exposure
could be confirmed for N. ciliata according to its positive correlation with pyrene exposure. In
bivalves, both temperate (L. balthica) and Arctic species (M. calcarea) showed similar
GluPyr concentration profiles, although lower GluPyr concentrations with PAH exposure
pointed towards the activation of alternative Phase Il biotransformation pathways in L.

balthica.

4. Conclusions and Implications

No effects of environmentally relevant PAH concentrations in sediment were found on
biomarkers AChE, GST and AOX activities in digestive gland of A. borealis. Overall
exposure levels were probably too low to induce detectable biomarker responses in A.
borealis digestive gland, while relatively low AChE levels and high baseline AOX levels
potentially indicated a stressed physiological status of 4. borealis. A further identification of
crucial confounding parameters in both enzymatic induction and inhibition, as well as
optimizing the biomarker assays for Arctic species is therefore needed for an appropriate

evaluation.

In Arctic and temperate benthic invertebrates similarly exposed to PAHs, the concentrations
of Phase I and Phase II biotransformation metabolites of pyrene did not increase with pyrene
exposure. Biotransformation rates appeared to be limited by low exposure to sediment-bound
chemicals among bivalve and polychaete species, although glucuronide conjugates
represented up to 74% and 79% of the total pyrene concentrations in Arctic bivalves and

temperate polychaetes, respectively. This shows that in order to characterize and quantify
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PAH exposure among invertebrate species, the metabolic products of Phase I and Phase 11

biotransformation should be equally considered.
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Supporting Information

Field sampling

Sampling of Arctic species. Sampling in Kongsfjorden Bay (Svalbard, Norway) was mainly
performed along a transect from Tensneset (79°0'22"N, 11°57'10"E) to Blomstrandhalveya
(78°59'14"N, 11°57"28"E), and to a lesser extent at Gluudneset and Tyskerhytta, on board of
research vessel MS Teisten (Kings Bay AS, Ny-Alesund) on 8 to 26 September 2014. Biota
samples were collected using a Van Veen grab (0.1 m?). Three Arctic marine benthic
invertebrate species with different feeding behaviours were collected: Astarte borealis
(mollusc; suspension feeder [Schumacher, 1817]), Macoma calcarea (mollusc; surface
deposit and suspension feeder [Gmelin, 1791]) and Nephtys ciliata (polychaete; predator and
deposit feeder [O.F. Miiller, 1776]).

Sampling of temperate species. Limecola balthica (mollusc; surface deposit and suspension
feeder [Linnaeus, 1758]) were collected at low tide at the Oesterdam (The Netherlands,
51°26'24"N, 4°13'16"E) on 16 to 17 July 2014. Alitta virens (polychaete; predator and deposit
feeder [Sars, 1835]) were obtained from a professional bait farm, Topsy baits

(Wilhelminadorp, the Netherlands).

Acclimatization

Arctic species were kept in glass aquaria with aerated, filtered (20 um) and UV-treated sea
water from the fjord (3 °C) for 2 to 6 d, before start of the experiment. In the case of V.
ciliata, a thin layer of sieved (1 mm @) sediment from the original sampling area was also

included. Animals were not fed during acclimatization.

Temperate species were kept in glass aquaria with aerated, filtered (0.2 pm) sea water for 5 d
and were fed once with spiked ground fish food (TetraMin) suspended in deionised water at
the start of the acclimatization. In order to have sufficient food supply, 10 mg of dry food for
A. virens and 3 mg (shell length > 15 mm) or 1.5 mg (shell length < 15 mm) for L. balthica

was added per individual.

Water quality variables such as pH, dissolved oxygen, salinity and temperature were

measured every two days during exposure time (Tables S2 and S3).
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Sediment collection

A moderately contaminated sub-toxic marine sediment was prepared by mixing a non-
contaminated ‘clean’ sediment with a naturally contaminated harbour sediment. Batches of
muddy sediment (132 L) and coarse sediment (176 L) were collected in the Oosterchelde
estuary (The Netherlands, 51°36'13"N, 3°47'49"E) at low tide on 24 to 25 April 2014 and 2
May 2014. Coarse sediment (0.5 — 1 mm grain size) was sieved in the field with a 1-mm sieve

whereas muddy sediment (< 0.5 mm grain size) was sieved at laboratory inside a 1-mm sieve

with some filtered sea water (0.2 pm). Once sieved both samples were stored at 3 °C.

A batch of harbour sediment (30 L) was collected near Nesserdijk (Rotterdam, the
Netherlands, 51°54'14"N, 4°31'17"E) by Nautisch Service Centrum in April 2014 and sieved
with a 1-mm sieve on 1 May 2014. A subsample of the sieved wet harbour sediment (800 mL)
was sent to Wageningen Marine Research laboratories (IJmuiden, the Netherlands) for further

chemical analyses (Table S4).

Test species

Arctic experiment. A. borealis, M. calcarea and N. ciliata were obtained as described in the @
field sampling section. 4. borealis randomly selected healthy individuals with an average and
standard deviation (SD) shell length of 31.30 (4.63) mm and wet wt. (flesh) of 7.47 (4.16) g
were used. As for M. calcarea and N. ciliata, we did not measure any morphological
parameters due to the scarcity of individuals. Animals were not fed during the acclimatization,

neither during the exposure experiments.

Temperate experiment. L. balthica and A. virens were obtained as described in the field
sampling section. L. balthica randomly selected healthy individuals with an average (SD)
shell length of 13.49 (2.46) mm and wet wt. (shell + flesh) of 0.47 (0.31) g were used. 4.
virens randomly selected healthy individuals with an average (SD) length of 10.83 (1.70) cm
and wet wt. of 2.75 (0.98) g were used. Animals were fed once at the beginning of the

acclimatization.

Pyrene metabolites analysis

Chemicals. Pyrene (98%) and 1-hydroxypyrene (OHPyr) (98%) were purchased from Sigma
Aldrich. Pyrenyl-1-O-glucuronide (GluPyr) (98.2%) was supplied by Isostandards Material.
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The dilutions at lower concentrations were prepared daily, depending on the experiment. All
chemical standards were stored at 4 °C and stock solutions at -20 °C. Acetone, methanol and
acetonitrile (all HPLC grade) were purchased from Macrom Fine Chemicals. For filtration
0.45 um polyamide filters (Macherey Nagel) were used. Oasis HLB (200 mg) cartridges were

purchased from Waters in order to perform clean-up step.

High-performance liquid chromatograph with a fluorescence detector (HPLC-FLD) analysis.
A high-performance liquid chromatograph (Agilent Technologies, Series 1100) with a
fluorescence detector (FLD, Agilent Technologies, Series 1100) was used for all the
quantitative measurements. The chromatographic method was modified from Beach et al.
[292]. A Supelcolsil LC-PAH HPLC column (10 cm x 4.6 mm, 3 pm) was used for the
separation. Mobile phases were prepared: of A: only Milli-Q water, B:
methanol:acetonitrile:Milli-Q water (38:57:5, v/v/v), both with 10 mM ammonium acetate.
The solvent gradient was 15 min, starting with 20% B with a linear gradual increase to 100%
B from 0 to 2.5 min with a 4 min hold at 100% B and continued with a linear decrease to 80%
B from 6.5 to 8.5 min with a 6.5 min hold at 80% B. An injection volume of 5 pL and a flow
rate of 800 uL/min were used throughout. Fluorescence detection was performed at an

excitation/emission wavelength pair of 235/388 nm for pyrene, OHPyr and GluPyr.

Limits of detection (LODs) were 0.2, 0.35 and 0.20 ng/mL for pyrene, OHPyr and GluPyr,
respectively. LODs were expressed in biomass units taking 0.4, 0.8, 0.05 and 1.7 g as the
average wet wt. per sample of M. calcarea, N. ciliata, L. balthica, A. virens, respectively.
Therefore, pyrene, OHPyr and GluPyr LODs were recalculated as 0.5, 0.88 and 0.5 ng/g for
M. calcarea; 0.25, 0.44 and 0.25 ng/g for N. ciliata; 4, 7 and 4 ng/g for L. balthica; and 0.12,
0.21 and 0.12 ng/g for A. virens. Samples with pyrene or GluPyr below the limit of
quantification (LOQ) were assigned a “LOQ/2” value.
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Table S1. Overview of the number of experimental aquaria per species and sediment treatment.

Treatment (n)*

Experiment Species Ind./aq.® BSL BSM BSH PSL PSH

Macoma calcarea 40-50 2 n.a. 2

Arctic Astarte borealis 25 4 4 6
Nephtys ciliata 20 2 3

Temperate Limecola balthica 50 2 n.a. 3
Alitta virens 16 3 4

“n: number of replicates per sediment treatment.

®Ind./aq.: number of organisms per aquarium.

BSL: Low Bivalve Sediment; BSM: Medium Bivalve Sediment; BSH: High Bivalve Sediment; PSL: Low
Polychaete Sediment; PSH: High Polychaete Sediment; n.a.: not available
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Table S3. Mean water quality parameters in the temperate experiment H treatment aquaria.

Limecola balthica - BSH
Day pH D.O.(%) D.O.(mg/L) Salinity (g/L) T (°C)

1 8.2 83.8 6.6 32.8 17.8
2 n.a. 80.3 6.3 n.a. 17.8
3 n.a. 79.3 6.2 n.a. 17.7
4 8.2 80.8 6.2 33.3 18.0
5 8.2 82.0 6.4 33.5 18.1
6 8.2 82.2 6.4 33.6 17.9
7 8.3 84.2 6.5 34.1 17.8
8 8.2 84.2 6.5 34.5 17.8
9 8.3 86.0 6.6 34.7 18.1
10 8.3 85.2 6.6 35.0 17.9
11 83 85.3 6.6 354 17.9
12 83 84.5 6.5 35.7 17.9

Alitta virens - PSH
Day pH D.O.(%) D.O.(mg/L) Salinity (g/L) T (°C)

1 8.1 79.4 6.2 33.8 18.1
2 n.a. 77.9 6.1 n.a. 18.1
3 n.a. 75.3 5.9 n.a. 17.9
4 8.1 76.7 5.9 34.4 18.2
5 8.2 78.9 6.1 34.0 18.2
6 8.2 80.7 6.2 34.5 18.0
7 8.2 80.9 6.2 35.2 18.0
8 8.2 81.6 6.3 35.1 18.0
9 8.2 79.7 6.0 35.5 18.3
10 8.2 82.1 6.3 34.8 18.0 @
11 82 82.4 6.3 35.2 18.0
12 82 81.4 6.2 35.7 17.9

D.O.: dissolved oxygen; n.a.: not available. Additional abbreviations are defined in Table S1.
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Table S4. Polycyclic aromatic hydrocarbons, polychlorinated biphenyls and polybrominated diphenyl
ethers concentrations in Rotterdam harbour sediment (Nesserdijk, Rotterdam).

Compound Mean (ng/kg dry wt.)
PHE 1378
ANT 459
FLT 2551
PYR 1811
BaA 1174
CHR 1352
BeP 510
BbF 1403
BkF 536
BaP 1148
BghiP 612
dBahA 135
Ind123P 1148
CB-28 <0.20
CB-52 0.64
CB-101 0.97
CB-118 0.89
CB-138 0.97
CB-153 0.64
CB-180 <0.50
BDE-28 0.23
BDE-47 2.04
BDE-99 6.12
BDE-100 0.51
BDE-153 10.71
BDE-154+BDE-155 0.26

PHE: phenanthrene; ANT: anthracene; FLT: fluoranthene; PYR: pyrene; BaA: benz(a)anthracene; CHR:
chrysene; BeP: benzo(e)pyrene; BbF: benzo(b)fluoranthene; BKF: benzo(k)fluoranthene; BaP: benzo(a)pyrene;
BghiP: benzo(ghi)perylene; dBahA: dibenz(a,h)anthracene; Ind123P: indeno(1,2,3-cd)pyrene.
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Table S9. Pyrene (Pyr), 1-hydroxypyrene (OHPyr) and pyrene-1-glucuronide (GluPyr) concentrations
in polychaete samples (ng/g wet wt.).

Species  Treatment Aquarium Pyr OHPyr GluPyr
virens PSL-1 1.5 1.5 10
. virens PSL-1 47 <LOD 2.4
. virens PSL-1 5.2 <LOD 2.9
virens PSL-1 0.5 <LOD 2.2
virens PSL-2 54 <LOD 3.5
virens PSL-2 1 <LOD 2.7
virens PSL-2 34 <LOD 32
virens PSL-2 1.3  <LOD 9.2
virens PSL-3 1.5 <LOD 3.2
virens PSL-3 0.6 <LOD 3.6
virens PSL-3 1.8 <LOD 6.1
virens PSL-3 1 <LOD 4.3
virens PSH-1 14 <LOD 8.1
virens PSH-1 09 <LOD 7.6
virens PSH-1 2 <LOD 5.7
virens PSH-2 1.6 <LOD 13.7
virens PSH-2 0.5 <LOD 11.8
virens PSH-3 3.6 <LOD 5.1
virens PSH-3 1.4 <LOD 4.6
virens PSH-3 1.1  <LOD 7
virens PSH-3 1.7 <LOD 4.8
virens PSH-4 43 <LOD 6.2
. virens PSH-4 3.1 <LOD 6.4
. virens PSH-4 0.6 <LOD 4.5

YN SN S S S SN SO S SN

asfiasfiasliasfieriicrfiesiiasfiesfiasfialerl ol ol ol ol ol ol ol ol ol ol ol @icfcs Bl Rl foficofiofiofioficlalolalalal ol ol ol ol ol alie

N. ciliata PSL-1 3 <LOD 4.1
N. ciliata PSL-1 2.8 0.6 10 @
N. ciliata PSL-1 11.8 <LOD 6.9
N. ciliata PSL-1 15.5 <LOD 7.5
N. ciliata PSL-1 2.6 <LOQ 9.1
N. ciliata PSL-1 14.3 <LOD 8.7
N. ciliata PSL-2 2.7 0.5 8.3
N. ciliata PSL-2 2 0.8 5.6
N. ciliata PSL-2 153 <LOD 13.8
N. ciliata PSL-2 2.7  <LOQ 4.5
N. ciliata PSL-2 10.1 <LOD 8.9
N. ciliata PSL-2 13.8  <LOD 20.9
N. ciliata PSH-2 28.5 <LOD 22.2
N. ciliata PSH-2 19.1 <LOD 15.7
N. ciliata PSH-2 5.2 2.5 8.2
N. ciliata PSH-2 27 <LOD 10.9
N. ciliata PSH-2 4.2 1.5 7.8
N. ciliata PSH-2 43 <LOD 10
N. ciliata PSH-5 3.6 3.7 6.4
N. ciliata PSH-5 4.6 2.6 20.6
N. ciliata PSH-5 15.8 <LOD 10.7
N. ciliata PSH-6 15.8 <LOD 9.3
N. ciliata PSH-6 3.8 <LOD 14.5
N. ciliata PSH-6 16.9 <LOD 10

L: low treatment; H: high treatment; LOD: limit of detection; LOQ: limit of quantification.
LOQs: 0.39 ng/mL (Pyr), 0.9 ng/mL (OHPyr) and 0.38 ng/mL (GluPyr).
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Table S10. Pyrene (Pyr), 1-hydroxypyrene (OHPyr) and pyrene-1-glucuronide (GluPyr)

concentrations in bivalve samples (ng/g wet wt.).

Species Treatment Aquarium  Pyr  OHPyr GluPyr
L. balthica L BSL-1 17.90 2.18 47.51
L. balthica L BSL-1 16.50 2.04 40.94
L. balthica L BSL-1 10.50 1.87 48.87
L. balthica L BSL-1 11.60 <LOD 5.40
L. balthica L BSL-1 22.70 <LOD 5.90
L. balthica L BSL-1 19.69 2.20 56.60
L. balthica L BSL-1 17.90 <LOD 7.40
L. balthica L BSL-1 13.70  <LOD 6.70
L. balthica L BSL-1 2230 <LOD 12.50
L. balthica L BSL-1 11.30 <LOD 6.00
L. balthica L BSL-1 36.38 2.98 73.97
L. balthica L BSL-1 10.00 1.19 56.36
L. balthica L BSL-2 1.30  <LOD 1.30
L. balthica L BSL-2 240 <LOD <LOQ
L. balthica L BSL-2 14.12 1.83 50.06
L. balthica L BSL-2 9.23 1.40 46.43
L. balthica L BSL-2 9.09 1.56 34.64
L. balthica L BSL-2 13.50 <LOD 11.70
L. balthica L BSL-2 6.45 1.06 45.73
L. balthica L BSL-2 11.00 <LOD 6.50
L. balthica L BSL-2 13.60 <LOD 4.80
L. balthica L BSL-2 13.20 <LOD 15.10
L. balthica L BSL-2 24.07 2.66 67.66
L. balthica L BSL-2 740 <LOD 22.80
L. balthica L BSL-2 8.90 <LOD 5.50
L. balthica H BSH-1 8.04 0.88 16.43
L. balthica H BSH-1 14.49 1.26 44 .81
L. balthica H BSH-1 11.40 1.27 37.22
L. balthica H BSH-1 18.00 <LOD 1.80
L. balthica H BSH-1 13.00 <LOD 1.40
L. balthica H BSH-1 11.90 <LOD 5.00
L. balthica H BSH-1 13.10 <LOD 2.20
L. balthica H BSH-2 330 <LOD 2.10
L. balthica H BSH-2 6.34 0.96 26.35
L. balthica H BSH-2 6.89 2.03 24.31
L. balthica H BSH-2 16.72 2.22 48.66
L. balthica H BSH-2 290 <LOD 3.90
L. balthica H BSH-2 10.88 1.47 43.56
L. balthica H BSH-2 19.60 <LOD 5.00
L. balthica H BSH-2 14.31 1.66 36.31
L. balthica H BSH-2 <LOQ <LOD 1.50
L. balthica H BSH-2 12.10 <LOD 4.50
L. balthica H BSH-3 16.25 0.99 50.65
L. balthica H BSH-3 12.55 1.75 47.08
L. balthica H BSH-3 6.03 1.01 22.13
L. balthica H BSH-3 11.85 1.30 18.75
L. balthica H BSH-3 22.60 <LOD 11.10
L. balthica H BSH-3 21.50 <LOD 22.70
L. balthica H BSH-3 21.00 <LOD 14.20
L. balthica H BSH-3 26.70 <LOD 31.30
M. calcarea L BSL-1 2.06 0.68 4.24
M. calcarea L BSL-1 0.70 1.10 0.70
M. calcarea L BSL-1 2.49 0.54 11.09
M. calcarea L BSL-1 5.11 0.88 23.48
M. calcarea L BSL-1 0.70 0.90 0.30
M. calcarea L BSL-1 2.16 0.69 8.37
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Table S10. Continued.

Species Treatment Aquarium  Pyr  OHPyr GluPyr
M. calcarea BSL-1 3.95 0.74 18.65
M. calcarea BSL-1 4.10 <LOD <LOD
M. calcarea BSL-1 2.80 1.10 <LOQ
M. calcarea BSL-1 5.50 <LOD 5.30
M. calcarea BSL-1 6.52 0.79 24.78
M. calcarea BSL-1 3.50 <LOD <LOQ
M. calcarea BSL-1 5.41 0.89 <LOQ
M. calcarea BSL-1 5.20 1.50 <LOD
M. calcarea BSL-1 4.76 0.55 15.50
M. calcarea BSL-1 2.92 0.33 9.40
M. calcarea BSL-1 1225 093 25.12
M. calcarea BSL-1 5.54 1.00 21.15
M. calcarea BSL-1 3.99 0.70 26.40
M. calcarea BSL-1 3.10 <LOD 3.20
M. calcarea BSL-1 5.30 0.95 34.72
M. calcarea BSL-1 470 <LOD 2.90
M. calcarea BSL-1 5.64 0.79 17.74
M. calcarea BSL-2 2.34 0.51 6.80

M. calcarea BSL-2 3.30 <LOD 1.70
M. calcarea BSH-6 230 <LOD <LOD
M. calcarea BSH-6 1.20 0.60 <LOQ
M. calcarea BSH-6 590 <LOD 0.50

BSH-6 11.40 <LOD 1.70
BSH-6 120 <LOD  0.30
BSH-6 1.10 1.10 0.80
BSH-6 430 <LOD 040
BSH-6 16.67  1.17 33.63
BSH-6 810 <LOQ  2.00 @

M. calcarea
M. calcarea
M. calcarea
M. calcarea
M. calcarea
M. calcarea

M. calcarea BSH-6 290 <LOD 3.00
M. calcarea BSH-6 6.30 <LOD 3.90
M. calcarea BSH-6 8.30 <LOQ 0.80
M. calcarea BSH-6 13.07 1.23 15.24
M. calcarea BSH-6 21.30 <LOQ 2.50

BSH-6 1734 1.30 24.78
BSH-6 17.39  1.66 40.16
BSH-6  21.18  1.50 30.23
BSH-6 3.54 1.28 32.48
BSH-6 6.11 0.89 34.12
BSH-6 5.25 0.86 38.24
BSH-7 6.04 1.67 41.63
BSH-7 5.72 1.37 15.23
BSH-7 3.66 1.25 23.47

M. calcarea BSH-7 3.78 1.63 29.22

M. calcarea BSH-7 4.83 1.84 36.21
L: low treatment; H: high treatment; LOD: limit of detection; LOQ: limit of quantification.
LOQs: 0.39 ng/mL (Pyr), 0.9 ng/mL (OHPyr) and 0.38 ng/mL (GluPyr).

M. calcarea
M. calcarea
M. calcarea
M. calcarea
M. calcarea
M. calcarea
M. calcarea
M. calcarea
M. calcarea
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Chapter 4

Table S14. ANCOVA analysis of pyrene-1-glucuronide (GluPyr) concentration for polychaete species
(Alitta virens and Nephtys ciliata). L: low treatment (PSL); H: high treatment (PSH).

Levene's test of equality of error variances®

Dependent variable: Log_GluPyr
F df1 df2 Sig.
1.594 1 46 0.213

Tests the null hypothesis that the error
variance of the dependent variable is equal
across groups.

* Design: Intercept + Log_Pyr + Treatment

Tests of between-subjects effects

Dependent variable: Log_GluPyr

Source Type III sum of squares df Mean square F Sig.
Corrected model 1.030* 2 0.515  12.657 0.000
Intercept 10.735 1 10.735 263.876 0.000
Log_Pyr 0.607 1 0.607 14933 0.000
Treatment 0.350 1 0.350 8.603 0.005
Error 1.831 45 0.041
Total 37.255 48
Corrected total 2.860 47

? R squared = 0.360 (adjusted R squared = 0.332)

Parameter estimates

Dependent variable: Log_GluPyr

95% confidence
interval

Parameter B SE t Sig. Lower Upper
bound bound
Intercept 0.804 0.054 14.804 0.000 0.694 0.913
Log Pyr 0.239 0.062 3.864 0.000 0.114 0.363
[Treatment=L] -0.171 0.058 -2.933 0.005 -0.289 -0.054
[Treatment=H] 0?

 This parameter is set to zero because it is redundant.

Estimates

Dependent variable: Log_GluPyr

95% confidence
interval

Treatment Mean SE
Lower Upper
bound bound
L 0.761* 0.041 0.678 0.844
H 0.9322 0.041 0.849 1.015

2 Covariates appearing in the model are evaluated at the
following values: Log Pyr = 0.5385.
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Pairwise comparisons

Dependent variable: Log_GluPyr

95% confidence interval for difference’

b

(I) Treatment Mean difference (I-J)  SE Sig.?

Lower bound Upper bound
L H -0.171"  0.058 0.005 -0.289 -0.054
H L 0.171" 0.058 0.005 0.054 0.289

Based on estimated marginal means

* The mean difference is significant at the 0.05 level.
b Adjustment for multiple comparisons: Bonferroni.

Table S15. ANCOVA analysis of pyrene-1-glucuronide (GluPyr) concentration for bivalve species
(Limecola balthica and Macoma calcarea). L: low treatment (BSL); H: high treatment (BSH).

Levene's test of equality of error variances®

Dependent variable: Log_GluPyr

F dfl daf2 Sig.

0.108 1 95 0.743

Tests the null hypothesis that the error variance of the
dependent variable is equal across groups.

 Design: Intercept + Log_Pyr + Treatment

Tests of between-subjects effects

Dependent variable: Log_GluPyr

T
Source Si,lr:l’? cI>IfI df Mean F Sig.
squares square
Corrected model 18.669* 2 9.334 10.950 0.000
Intercept 0.012 1 0.012 0.014 0.906
Log Pyr 18.393 1 18.393 21.576 0.000
Treatment 0.063 1 0.063 0.074 0.786
Error 80.130 94 0.852
Total 166.421 97
Corrected total 98.799 96

* R squared = 0.189 (adjusted R squared = 0.172)

Parameter estimates

Dependent variable: Log_GluPyr

95% confidence
interval

Parameter B SE t Sig. Lower Upper
bound bound
Intercept 0.049 0.224 0.219 0.827 -0.395 0.493
Log_Pyr 0.964 0.208 4.645 0.000 0.552 1.377
[Treatment=L] -0.051 0.188 -0.272 0.786 -0.424 0.322
[Treatment=H] 0?

* This parameter is set to zero because it is redundant.
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Chapter 4

Estimates

Dependent variable: Log_GluPyr

95% confidence
interval

Treatment Mean SE
Lower Upper
bound bound
L 0.809* 0.133 0.544 1.074
H 0.860* 0.132 0.598 1.122

2 Covariates appearing in the model are evaluated at the following
values: Log Pyr=0.8412.

Pairwise comparisons

Dependent variable: Log_GluPyr

Mean 95% confidence interval for
(I) Treatment difference SE Sig.* difference®
-1 Lower bound Upper bound
L H -0.051 0.188 0.786 -0.424 0.322
H L 0.051 0.188 0.786 -0.322 0.424

Based on estimated marginal means

* Adjustment for multiple comparisons: Bonferroni.
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Abstract

Currently, risk assessment for oil contamination does not consider behavioral responses of
benthos to oil toxicity. Avoidance of oil-contaminated sediment by benthic amphipods,
however, may be a highly sensitive endpoint for sublethal effects of commonly used distillate
fuels. In the present study, the avoidance behavior of temperate freshwater (Gammarus pulex)
and marine (Gammarus locusta) amphipods is tested, allowing them to choose between a
reference sediment and a Distillate Marine grade A (DMA) oil-spiked sediment. Avoidance of
DMA-spiked sediment at 1000 mg/kg (dry weight) was significant within total exposure time
(96 h) in G. pulex and within the first 72 h in G. locusta in one of two tests. Absence of DMA
avoidance at lower concentrations (< 250 mg/kg dry weight) indicates that test species can
only detect DMA above these concentrations. However, sensitivity to oil may vary according
to the phenology and physiological conditions of the populations involved, such as the species
temperature tolerance and reproductive stage. The results suggest that avoidance tests may be
used as an alternative to traditional chronic toxicity tests provided that a causal link between

avoidance and long-term effects can be established.
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1. Introduction

Increasing global offshore oil and gas (O&G) production, oil transportation and shipping
entail higher risks of accidental oil spills which are known to cause severe environmental
impacts. The assessment of potential environmental consequences should be based on the
relationship between the extent of oil exposure and the sensitivity of marine species and their
habitats. Following a spill, the composition of oil and its toxicity will mostly vary according
to the timing and magnitude of oil spreading and evaporation on sea surface [293]. In this
process, the more water soluble and bioavailable fraction of oil volatilizes or degrades in the
first several days, while the more hydrophobic oil components will be deposited to the 5
seafloor where degradation is much slower [294]. Exceptions may apply to polar regions
where the presence of ice can greatly reduce oil spreading and low temperatures may lower oil
hydrocarbons partitioning and depletion rates [51]. Thus, the identification of biological
features affecting oil exposure in local benthic organisms may help to better characterize the

sensitivity of environmental receptors such as shoreline habitats [295,296].

Monitoring of environmental stress resulting from O&G activities can be based on assays that
use behavioral endpoints, like movement ability [105,297]. Animal behavior integrates
biochemical and physiological processes in response to chemical stressors. As such it is
expected to be more sensitive than a lethal response [298], provided that an organism is able
to sense a toxicant via olfaction or taste [299], and it may potentially reflect changes at a
population level [97]. In a natural environment, mobile species may be able to move away
from oil-contaminated sites before the oil can exert its toxic effects. In some cases, such
responses may be absent. For example, in case of chronic toxicity [300] or when the

individuals’ energy allocation to locomotion, and thus avoidance, is attenuated [301-303].

Previous research addressed avoidance behavior in laboratory assays, studying spatial
avoidance of either water or sediment containing different chemicals (summarised by Aratjo
et al. [96]). Amphipods have been used in avoidance assays since they are equipped with a
sensory system [98-101]. Studies on the avoidance behavior of oil-contaminated sediment by
benthic organisms are limited and restricted to the marine environment [99,304-306]. In these
studies, generally a bi-compartmented system container was used to test the ability of
amphipods to discern between a clean and a contaminated sediment. However, a preference
for the clean sediment or avoidance of the contaminated sediment is not always evident,

because for instance exposure to sublethal concentrations of oil may lead to contrasting
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sensitivities among different groups of amphipods or ‘attractive’ odours may be masked by oil
[108,109]. The effect of time is generally not considered or limited to a single time point per
exposure day, which eliminates the possibility of identifying likely experimental biases such

as a (pre-)adaptation to the chemical cue [100].

Spatial avoidance can be divided into active and passive avoidance [96], each occurring under
the changing physical state of chemicals over exposure time. Active avoidance or ‘escape’
response relates to the ability of an organism to detect a chemical and to move to a lesser
contaminated area, whereas passive avoidance or ‘drift’ response will occur when water flow
is responsible for the organism displacement. In a bi-compartmented static system, amphipods
will display active spatial avoidance provided that no other physical disturbances are present
(e.g., sand, seaweed). The effect of time on the amphipods distribution may help to predict
possible interactions between avoidance and their physiological susceptibility to oil [307] as

well as their long-term implications [308].

The objective of the present study is to evaluate the potential of sediment avoidance tests
using benthic amphipods as a monitoring tool for oil spill impact assessment. Prior to testing,
oil was mixed with the sediment. We tested the avoidance behavior of a freshwater amphipod
Gammarus pulex and a marine benthic amphipod Gammarus locusta as model invertebrate
species, to sediment spiked with a commonly used distillate fuel oil (i.e., Distillate Marine
grade A [DMA]) during a 96-h test period. DMA oil is widely used as fuel in midsized to
larger ships such as large inland vessels, large cutters and coasters [309], and is often used in
oil toxicity studies [43,46]. These species were deployed as a first step to develop ecologically

relevant tests for oil impact assessment.

2. Materials and Methods

2.1. Test organisms

Freshwater experiment (FW). Following De Lange et al. [100], G. pulex (Linnaeus, 1758)
adult individuals (9.7+1.8 mm) were collected from a non-polluted freshwater stream near
Heelsum (The Netherlands, 51°58'40.3"N, 5°45'27.8"E) on 13 March 2014. Animals were
transported to the laboratory in plastic buckets with water from the collection stream and
acclimatized in a water bath during 10 d (15+1 °C). Since animals were collected in winter

and seasonal effects may influence tolerance to toxicants exposure [310], the temperature and
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duration of acclimatization were chosen according to the temperature range used by similar
avoidance studies [99,100] and studies on effects of temperature on G. pulex physiology
[311,312]. During acclimatization, oxygenated copper-free tap water was used and animals
were fed unconditioned poplar leaves ad libitum. Prior to their use, poplar leaves were leached

in tap water to remove active leachable substances, and dried.

Water quality variables such as temperature, dissolved oxygen, electric conductivity and pH

were measured regularly during acclimatization (Table S1).

Marine water experiments (MW1 and MW2). G. locusta (Linnaeus, 1758) individuals were
collected over 4 d in the Oosterschelde estuary (The Netherlands, 51°32'41.3"N, 3°55'30.0"E)
on 24 to 25 June 2016 and 25 to 26 July 2016, hereafter MW 1 and MW2 experiments. Since
G. locusta life-span and maturity age are known to be greatly reduced by water temperature
[313], individuals of the species were collected at two different times during summer in order
to assess the consistency of experimental results. Animals were transported to the laboratory
in 15-L jerry cans with water from the collection site and acclimatized during 5 d (15+1 °C).
Sea water temperature from the collection site was 17+1 °C in June and 21+1 °C in July.
During acclimatization, animals were kept in 18-L glass aquaria each of them holding
approximately 200 to 500 individuals in 15 L of oxygenated artificial sea water (ASW) (40
g/L, Pro Reef Salt, Colombo B.V.). A few stones from the collection site were also placed
inside each aquarium for comfort of the test animals and animals were fed fish food tabs

(Tetra Wafermix) ad libitum.

2.2. Sediment spiking

For the freshwater experiment, sediment was collected from a pond at Wageningen University
campus. Sediment was sieved with a 2-mm sieve (83% dry wt., 0.88% organic matter) and
spiked with DMA to obtain four different nominal concentrations: 0 (Control), 50 (Low), 250
(Medium) and 1000 (High) mg DMA/kg sediment (dry wt.). DMA oil was supplied by Gulf
Oil (Nigtevecht, the Netherlands) and was the same as used in our earlier studies, where also
chemical characteristics are provided [43,46]. Nominal DMA concentrations were chosen to
match field-relevant concentrations [314,315] and to match the range of oil concentrations for
which PAH sediment-water partition coefficients (Kq) are generally independent of oil
concentration (i.e., 100 — 1000 mg/kg dry wt. [46]). This was observed after a 2 year

weathering process of oil-spiked sediment, although in some cases (i.e., 3-ring PAHs) Kq
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values were increased after weathering [46]. A relative stability of 2- to 3-ring PAHs in
weathered surface oil [316] and in slick oil spiked to sediment [317], as well as their sublethal
effects on benthic biota exposed at 1.7 mg/kg (dry wt.) (3 s0PAH = 2.6 mg/kg dry wt.) or
more, have been reported in literature [317,318]. Therefore, concentrations of 3-ring PAHs
(e.g., phenanthrene, anthracene) in the high DMA treatment were considered sublethal (~1
mg/kg dry wt.) assuming a fair similarity in weathering conditions between Jonker et al. [43]

and the present study.

For each sediment treatment containing DMA-spiked sediment (50 — 1000 mg/kg dry wt.), the
required volume of DMA was divided into three batches to minimize the adsorption of DMA
onto the barrel walls and its evaporation during stirring. Sediment was continuously stirred
while each of the DMA batches was added drop by drop from a glass pipette. Once each oil
batch was added, sediment stirring continued for about 5 min and allowed to rest for another 5
min before addition of following batch under the same procedure. After spiking, each
sediment treatment was mixed on a roller bank during approximately 22 h and stored (7=1 °C)
for 4 weeks before use. For the control treatment, sediment was stirred and mixed in the same

way without the addition of oil, and stored.

For the marine G. locusta experiments, sediment was collected at the animals collection site
during low tide. Sediment was sieved (86% dry wt., 0.82% organic carbon) and spiked with
DMA following the same procedure as in the freshwater experiment. After spiking, each
sediment treatment was mixed on a roller bank during approximately 24 h and stored (4+1 °C)

for 2 to 6 weeks before use. The control sediment treatment was prepared as mentioned above.

2.3. Experimental design

The avoidance experiments were performed in glass aquaria (20 x 20 cm). A glass barrier was
placed in the middle of each aquarium dividing the bottom into two equal parts. One side was
filled with a 2-cm layer of control sediment and the other side with a 2-cm layer of control or
spiked sediment. In each experiment, 800 mL of either copper-free tap water or ASW was
gently added to each aquarium in order to avoid sediment disturbance, after which the systems
were allowed to stabilise for 24 h. The freshwater G. pulex experiment was performed at
Wageningen University laboratories, whereas the marine experiments with G. locusta were
performed at the marine research laboratories of Wageningen Marine Research (Yerseke, the

Netherlands). In the freshwater experiment, the aquaria were randomly distributed within a
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water bath (15+1 °C), whereas for marine water experiments the aquaria were randomly

placed on a table located inside a climate room (15+1 °C). Once the systems were stabilised,
another 800 mL of either copper-free tap water or ASW was carefully added, after which the
systems were allowed to stabilise for 3 d. Five replicates (aquaria; n = 5) were used for each
of the four sediment treatments (control, low, medium and high DMA concentration) during

each experiment.

Prior to the addition of the animals, the water layer was partially renewed. A volume of 800

mL of the system water was pumped out of each aquarium and renewed with 800 mL of clean
copper-free tap water or ASW, respectively. This was done to minimize the concentration of

water soluble DMA toxicants in the water column with respect to the concentration in the 5
spiked sediment layer at start. The glass barriers were carefully removed and 20 individuals

were added in the middle of each aquarium to ensure that the starting position did not

influence the experiment outcome [100]. Animals were kept under a 16 h light: 8 h dark red

light cycle since Gammarus spp. usually become photonegative when they reach an adult size

[319]. However, dim light was needed for maintenance and to facilitate the visual recording of

the animal distribution.

2.4. Endpoints

During the removal of barriers, some mixing of control and spiked sediment could not be
prevented at surface level in the middle area. Therefore, the middle area was excluded from
the statistical analyses. Each system sediment surface was divided into three areas: control
(37.5% of the surface), middle (25%) and spiked (37.5%). The number of individuals staying
for at least 5 to 6 consecutive seconds within the control or spiked area during an observation
bout was recorded as ‘control’ or ‘spiked’, respectively. Recordings took place during a 96-h
period allowing an estimation of the effect of DMA concentration (treatment) on Gammarus
spp. avoidance of the DMA-spiked area over time (day). Only the results of the ‘control’
scores of each replicate were used to test whether their relative distribution at the control
section was higher than 37.5%, in which case the null hypothesis was rejected and avoidance
of the spiked area was considered occurred. Water quality variables were measured at the
beginning of each recording day in three experimental control replicate aquaria without
animals during the first marine experiment (Table S2) and in each experimental replicate at

the end (Table S3) of both marine experiments.

157

Ariadna Szczybelski Thesis Headers.indd 157 @ 26-09-18 09:24:26



Chapter 5

2.5. Data analyses

Logistic regression within the framework of Generalized Linear Mixed Models (GLMM) was
used to analyse the relationship between the number of individuals in the control section
treated as repeated measures for each aquarium (experimental unit) and the effect of
treatment, day and their respective interaction as effect builders. GLMM statistical tests
provide a more flexible approach than other non-parametric tests for analysing non-normal
data when random effects are present. Only observations obtained from the second to the
fourth experimental day were used since they include an equal number of recordings per day
and handling of the animals could also have induced stress on the first day. Observations were
collected 3 times per day for each aquarium and treatment in the freshwater experiment, that
is 180 observations in total; and 7 times per day for each aquarium and treatment in the
marine experiments, making a total of 420 observations for each experiment. Observations
were assumed to be Poisson distributed following the repeated recording of a single event
(i.e., ‘control’ score takes integer values between 0 and 20) and a pairwise contrast among
treatments and recording days was chosen in order to calculate the estimated means. The
significance level of an overall statistical comparison was set at p < 0.05, while for pairwise
comparisons the least significant difference correction was applied. All statistical calculations

were performed using SPSS version 22.

3. Results and Discussion

3.1. Freshwater Gammarus pulex avoidance

G. pulex avoidance was significantly and consistently higher in the high DMA treatment than
in the control and low treatment (day 2 to 4) (Figure 1; Tables S4-S6). G. pulex avoidance
behavior in the medium DMA treatment was significantly different from that in the control,
low and high treatment on day 2, after which an apparent attenuation of avoidance was
observed (Figure 1). No mortality was observed within the total test duration (4 d) throughout

the range of nominal DMA concentrations used (0 — 1000 mg/kg dry wt.).
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Figure 1. Generalized linear mixed models avoidance estimated means with confidence
intervals and ‘treatment x day’ pairwise contrasts for Gammarus pulex exposed to Distillate
Marine grade A (DMA) oil (FW experiment). Avoidance is expressed as number of
individuals staying for at least 5 to 6 consecutive seconds within the control section per DMA
treatment (0 — 1000 mg/kg dry wt.) and day (2 — 4). Significant contrasts (p < 0.05) are shaded
gold.

A consistent avoidance response of G. pulex exposed to the high DMA treatment from day 2
to 4 could be explained by a combined result of exposure to a high DMA concentration and to
the species upper thermal tolerance limit (i.e., 15 °C) in northern populations of G. pulex
[311]. According to the ‘oxygen- and capacity-limited thermal tolerance’ model, failure of
oxygen transport systems to match body oxygen demand dictates thermal tolerance [320]. An
increase in the oxygen (energy) demand of G. pulex winter populations (~5 °C at which the
organisms were sampled) at the exposure temperature (15 °C) is expected to be met by an
increase in their ventilation rate [321,322]. An increase in ventilation may facilitate the
detection and transmission of chemical cues [323] and possibly triggered avoidance in G.

pulex exposed to the high DMA treatment from the first day of exposure. Another
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consequence of the maintenance of G. pulex within its optimal thermal window can be that
glycogen reserves, which is the main energy fuel for oxygen deficiency and sustained activity,
are relatively stable provided that food is not limiting [324]. The mobilization of these energy
stores would allow G. pulex to actively avoid DM A-spiked sediment and to counterbalance

the stress produced by DMA exposure at the experiment start.

DMA exposure in the low and medium DMA treatments was most probably too low to elicit a
continuous avoidance by G. pulex. The observed differences in DMA avoidance response
between the low and medium treatment exposed G. pulex on day 2 and 4 of exposure were
most likely a reflection of within treatment variability (Figure 1; Table S4). Variability in the
actual exposure to DMA and avoidance response of G. pulex exposed to the medium DMA
treatment may be underlain by intraspecific differences in G. pulex molecular response to

starvation or reproduction [311,325] among other factors.

In summary, G. pulex active avoidance of DMA-spiked sediment was significant and
continuous over exposure time (day 2 to 4) at a DMA concentration of 1000 mg/kg (dry wt.),
and sometimes at 250 mg/kg (dry wt.). Since no mortality was observed within the total test
duration (4 d) in none of the treatments, it was assumed that no deleterious effects were

caused by DMA on the sensory system of individuals.

3.2. Marine Gammarus locusta avoidance

G. locusta avoidance during the first marine experiment was significantly higher in the high
DMA treatment compared to the control, the low and medium DMA treatments from day 2 to
3 (Figure 2), whereas in the second marine experiment no effect of treatment or day on G.
locusta avoidance was found (Figure 3). G. locusta avoidance was also significantly higher in
individuals exposed to the high DMA treatment in the first compared to the second marine
experiment from day 2 to 3 (Tables S13 and S14). No mortality was observed within the total
test duration (4 d) throughout the range of nominal DMA concentrations used (0 — 1000

mg/kg dry wt.).
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Figure 2. Generalized linear mixed models avoidance estimated means with confidence
intervals and ‘treatment x day’ pairwise contrasts for Gammarus locusta exposed to Distillate
Marine grade A (DMA) oil (MW 1 experiment). Avoidance is expressed as number of
individuals staying for at least 5 to 6 consecutive seconds within the control section per DMA
treatment (0 — 1000 mg/kg dry wt.) and day (2 — 4). Significant contrasts (p < 0.05) are shaded

gold.
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Figure 3. Generalized linear mixed models avoidance estimated means with confidence
intervals and ‘treatment x day’ pairwise contrasts for Gammarus locusta exposed to Distillate
Marine grade A (DMA) oil (MW2 experiment). Avoidance is expressed as number of
individuals staying for at least 5 to 6 consecutive seconds within the control section per DMA
treatment (0 — 1000 mg/kg dry wt.) and day (2 — 4). Significant contrasts (p < 0.05) are shaded
gold.

In an experiment performed by Hellou et al. [99], the preference for reference sediment could
also not be clearly elucidated in the marine amphipod Corophium volutator exposed to freshly
diesel oil-spiked sediment (> 0.01%). As explained by the authors, a high variation in the
response between exposure replicates and high mortality of C. volutator were caused by a
narcotic effect of diesel oil. Besides avoidance behavior, re-emergence and failure to burrow
did not follow a concentration-related response in C. volutator exposed to sediment spiked
with artificially weathered crude oil at 220 to 880 mg/kg (dry wt.) [326]. In our experiments,
the highest two DMA concentrations were 0.02% and 0.1%, respectively, but neither

mortality nor narcotization were observed in G. locusta. As in C. volutator example [326], G.

162

26-09-18 09:24:28



Chapter 5

locusta avoidance behavior did not correlate with DMA concentration (50 — 1000 mg/kg dry

wt.) over exposure time (i.e., day 2 to 4).

Although the cause of the difference in G. locusta avoidance behavior between the first and
second experiments is not known, this may be linked to differences in life stage-related factors
such as body size [327], lipid content or maturity stage [99,313] between the two experiments.
Since body size and structural (membrane) lipid content may influence the chemical exchange
at body surface, changes in these variables may be reflected in differences in the apparent
sensitivity to DMA and avoidance between summer cohorts. Variability in body size and
structural lipid content [328] may be further increased by a reduction in the life-span of G.
locusta above 15 °C [313], the maximum expression of which can be found among summer 5
cohorts. A G. locusta generational succession was observed between June and July by
Kolding and Fenchel [329] in the Limfjorden strait (Denmark) and by Costa and Costa [327]
in the Sado estuary (Portugal), according to which a higher proportion of larger-sized gravid

females would be expected in G. locusta collected in June compared to July.

Lack of avoidance by G. locusta exposed at 50 and 250 mg DMA/kg (dry wt.) (respectively
low and medium concentration) in both marine experiments could be related to a low
exposure of sediment treatments as also observed in the freshwater experiment. Both age- and
sex-related differences in their oxidative stress tolerance [327,330] might account for the lack

of a DMA concentration- nor time-dependent avoidance response by G. locusta [331].
3.3. Comparison of avoidance between Gammarus pulex and Gammarus locusta

Avoidance behavior of DMA-spiked sediment (50 — 1000 mg/kg dry wt.) could not be clearly
observed in G. locusta, whereas in G. pulex avoidance was significant and continuous over
exposure time (i.e., day 2 to 4) at the highest DMA concentration (Figures 4 and 5; Tables
S16 and S17). Interpretation of avoidance results may be complicated by differences in
behavior of DMA in freshwater and marine systems as the aqueous solubility of PAHs tends
to decrease with increasing salinity [24]. Therefore, oil may have been easier detectable by
Gammarus sp. in the freshwater experiment. PAH degradation will be generally higher in
freshwater than in marine systems, although degradation will be strongly influenced by
oxygen availability in the sediment and the molecular size of PAHs [43]. In the present study,
oxygen concentration was not measured in the freshwater experiment, but lower oxygen levels

were detected at the end of exposure in the second compared to the first marine experiment
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(Table S3). This might point to a higher microbial degradation of PAHs [43] and therefore,

lower DMA toxicity, in the second marine experiment than in the first marine experiment.

Estimates DMA
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Figure 4. Generalized linear mixed models avoidance estimated means with confidence
intervals for Gammarus pulex (FW experiment) and Gammarus locusta (MW 1 and MW2
experiments) exposed to Distillate Marine grade (DMA) oil. Avoidance is expressed as
number of individuals staying for at least 5 to 6 consecutive seconds within the control section
per DMA treatment (0 — 1000 mg/kg dry wt.) and day (2 — 4).

As indicated by previous studies [99,306], lack of reproducibility of avoidance results among
test organisms may be caused by differences in their growth rate and reproductive stage.
Factors such as the individual size of G. pulex (~10 mm) and temperature at collection time
(~5 °C) may have affected the experimental results. G. pulex has a natural life-span of 1 to 2
years and possibly experienced a low reproductive effort during the freshwater experiment
[332]. A longer life-span of G. pulex (11 — 15 months at 15 °C [333]) compared to G. locusta
(5 — 6 months at 15 °C [313]) and/or lower reproductive effort of female G. pulex during the
freshwater experiment may have caused an increase in the energy budget in G. pulex

compared to that of G. locusta, and thus their capacity of avoidance during DMA exposure.

In addition, it is not known whether slightly hypersaline conditions (40 — 42 mS/cm, Table
S3) could have resulted in intraspecific differences in G. locusta growth [334] or if a likely
osmotic imbalance in G. locusta [335] may have been enhanced by oil exposure.
Osmoregulation is an energy-consuming regulatory function in Gammarus spp. in a way that
its alteration may reduce the energy allocated to locomotion and ventilation. A combined
effect of osmoregulation- and reproduction-related energy consumption may have reduced the
ability of G. locusta to ‘escape’ from DMA, whereas G. pulex energy allocation to
hyperventilation during acclimatization, may be compensated by an early DMA detection, via

ventilation, and long-term stability of glycogen reserves.
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Figure 5. Generalized linear mixed models ‘experiment x treatment x day’ pairwise contrasts
for Gammarus pulex (FW experiment) and Gammarus locusta (MW 1 and MW?2 experiments)
exposed to Distillate Marine grade A (DMA) oil. Avoidance is expressed as number of
individuals staying for at least 5 to 6 consecutive seconds within the control section per DMA
treatment (0 — 1000 mg/kg dry wt.) and day (2 — 4). Significant contrasts (p < 0.05) are shaded
gold.

3.4. Implications for the use of avoidance tests with Gammarus spp.

The present study showed that spatial avoidance may be integrated in the current risk
assessment framework due to its higher sensitivity than mortality [326]. However, the
interpretation of spatial avoidance results required some assumptions to be made related to
inter-individual variability. Such variability may be greater in summer generations because
their reproductive effort should be maximized when their life-span is shortened by high
temperatures and this would restrict their capacity to cope with metabolic stress. Therefore, a
supporting analysis of energy consumption in amphipods may help to establish if their energy
budget is affected by the energy allocation to avoidance of oil and if such trade-off follows a

seasonal pattern according to the species reproductive strategy. Avoidance results obtained
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under such combined analysis could also be translated into a recognizable pattern of effects on

growth and reproduction in short life-span species.

In the present study, nominal DMA concentrations were chosen according to the range of
DMA oil concentrations for which a Kq decrease had been observed for most PAHs by Jonker
et al. [46]. However, variability in PAH partitioning due to differences in the storage time of
sediment treatments might have affected the comparability between the present avoidance
tests. This stresses the importance of including a chemical characterization of sediment
treatments prior to and after avoidance tests, as well as of the overlying water during exposure
for each replicate [83]. The interpretation of avoidance results may also be improved after the
inclusion of a statistically sufficient number of recordings between the time to achieve a
uniform distribution in control treatment replicates [101] and the end of recording on the first
day of exposure. Such additional recordings would serve to identify the possibility of a

reversible narcotic effect, reducing the risk of bias.

The interpretation of results may be further improved using a more gradual acclimation to
standard temperature and salinity conditions in field-collected organisms. Acclimation can be
energy demanding in amphipods and may influence their energy allocation to avoidance. This
was hypothesized for G. pulex as the acclimation to standard temperature regimes could have
affected its energy metabolism and thus, sensitivity to temperature and other stressors [336].
Similarly, it is not known if the variation in salinity could have contributed to the observed
variability in G. locusta experiments. In both cases, the observed variability could have been
associated to different rates of energy consumption among life-span stages during
acclimatization. In addition, factors such as the reproductive or moulting stage could influence

the chemical exchange at body surface and sensitivity to oil of amphipods.

Consequently, sampling efforts should be addressed to specific periods at which contributing
factors to the sensitivity to oil in amphipods are more uniform among gammarid populations.
One needs to consider as well how seasonality may influence the energy reserves and activity
of test organisms as this would facilitate the extrapolation of avoidance results between
studies from different climate regions. Avoidance of oil can be a useful tool to relate energy
consumption to growth reduction and delated maturation in adult amphipods, helping to
predict the environmental risks derived from their behavioral reaction. A combined

monitoring of spatial avoidance and metabolic responses and its integration in risk analysis
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may therefore help to anticipate in which exposure scenarios gammarid populations can

recover from an oil spill following habitat fragmentation [16,295].

4. Conclusions

In our experiments, it was observed that the freshwater amphipod G. pulex avoided DMA-

spiked sediment at 1000 mg/kg (dry wt.). For the marine amphipod G. locusta, avoidance was

either not consistent with time or below effect threshold. Oil behavior may have differed in

the freshwater experiment compared to the marine experiments, despite a similar spiking

protocol. Season-related differences in the physiology of amphipod species may restrict the
applicability of avoidance tests to non-reproductive and/or winter individuals. Besides the 5
inclusion of scoring on the first day of exposure, we recommend the analysis of energy

reserves dynamics in amphipods in order to ascertain whether any experimental factors other

than the exposure duration can significantly alter the energy allocation to locomotion. The

predictive power of avoidance tests using amphipod species could be increased after the

identification of biological factors that may influence sensitivity to oil exposure in sediment.
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Supporting Information

Table S1. Gammarus pulex average water quality variables during acclimatization.

Day Temperature (°C) Oxygen (mg/L) Electric conductivity (uS/cm) pH
1 15.6+0.1 9.3+0.1 401.8+0.5 7.3+£0.0
2 15.6 0.0 9.2+0.2 4045+ 1.7 7.2+0.0
3 15.6 0.0 9.9+0.1 378.8+4.3 7.5+0.0
4 15.7+0.1 9.5+0.2 357.5+£5.1 7.5+0.0
5 15.8+£0.0 9.5+0.2 3423+73 7.6+0.0
6 15.7+0.1 9.4+0.2 327.3+9.0 7.7+0.0
7 16.4+0.0 10.1+0.1 198.6 4.2 7.9+0.0
8 16.4+£0.0 9.8+0.2 204.6 £7.1 7.8+0.0
9 16.4+0.0 9.4+0.1 208.8 + 8.2 7.8+0.0

Table S2. First marine experiment (MW 1) average water quality variables based on three

experimental replicates without Gammarus locusta individuals.

Exposure day  Salinity (mS/cm) Temperature (°C) Oxygen (mg/L) pH

1

2
3
4

40.1
40.7
413
41.5

16.1
16.8
16.6
16.3

7.1
6.5
7.0
7.4

7.8
8.0
8.2
8.2

Table S3. End of exposure (day 4) water quality variables per Distillate Marine grade A (DMA) oil

sediment treatment (average + SD) in Gammarus pulex (FW) and Gammarus locusta (MW 1 and
MW?2) experiments.

Experiment DMA (mg/kg dry wt.)  Salinity (mS/cm) Temperature (°C) Oxygen (mg/L) pH
0 - n.a. n.a. n.a.
50 - n.a. n.a. n.a.
Fw 250 - n.a. n.a. n.a.
1000 - n.a. n.a. n.a.
0 422+0.2 16.3+0.1 6.3+0.3 8.2+0.0
MW1 50 42.1+0.1 16.4+£0.2 6.0+£0.3 8.2+0.0
250 422403 16.3+0.1 6.3+04 82+0.0
1000 42.2+0.1 16.4+0.2 6.1 0.2 8.2+0.0
0 41.4+0.9 15.4+0.1 52+0.3 8.1+0.1
MW2 50 40.5+0.9 154+0.1 54+0.8 8.0+0.2
250 40.7+1.9 15.4+0.1 52+0.3 8.0+£0.0
1000 40.2+0.6 15.4+0.0 53+04 8.0+0.0
n.a.: not available.
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Table S4. Estimated means of target variable (Individuals in control section) for “Treatment X Day”
effect on Gammarus pulex avoidance.

DMA treatment 95% confidence interval
Day Mean SE
(mg/kg dry wt.) Lower Upper
2 7.896 0.636 6.639 9.152
0 3 8.485 0.794 6.919 10.052
4 7.474  0.652 6.186 8.762
2 7.378 0.615 6.164 8.593
50 3 7.982 0.770 6.462 9.501
4 6.588 0.613 5.379 7.797
2 10.034 0.717 8.618 11.450
250 3 9.798 0.853 8.114 11.482
4 9.066 0.719 7.647 10.485 5
2 12727 0.808 11.131 14.322
1000 3 11.648 0.930 9.812 13.483
4 11.746 0.818 10.131 13.360
169
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Table SS. Pairwise contrasts for “Treatment X Day” effect on Gammarus pulex avoidance.

DMA treatment Contrast 95% confidence interval
Day pairwise contrast . SE t df  Adj. sig.
(mg/ke dry wt.) estimate Lower Upper
0-50 0.517 0.885 0.584 168 0.560 -1.230 2.265
0-250 -2.138 0959 -2.230 168 0.027 -4.032 -0.245
0 - 1000 -4.831 1.029 -4.697 168 5.461E-06 -6.862 -2.801
50-0 -0.517 0.885 -0.584 168 0.560 -2.265 1.230
50 - 250 -2.656 0945 -2.810 168 0.006 -4.521 -0.790
50 - 1000 -5.348 1.016 -5266 168 4.212E-07 -7.353 -3.343
2 250-0 2.138 0959 2.230 168 0.027 0.245 4.032
250 -50 2.656 0945 2810 168 0.006 0.790 4.521
250 - 1000 -2.693  1.081 -2.492 168 0.014 -4.826 -0.560
1000 -0 4831 1.029 4.697 168 5.461E-06 2.801 6.862
1000 - 50 5348 1.016 5266 168 4.212E-07 3.343 7.353
1000 - 250 2.693 1.081 2492 168 0.014 0.560 4.826
0-50 0.504 1.106 0.456 168 0.649 -1.679 2.686
0-250 -1.313  1.165 -1.127 168 0.262 -3.612 0.987
0-1000 -3.162  1.223 -2.587 168 0.011 -5.576 -0.749
50-0 -0.504 1.106 -0.456 168 0.649 -2.686 1.679
50-250 -1.816 1.149 -1.581 168 0.116 -4.084 0.452
50 - 1000 -3.666 1207 -3.037 168 0.003 -6.049 -1.283
3 250-0 1.313 1.165 1.127 168 0.262 -0.987 3.612
250-50 1.816 1.149 1.581 168 0.116 -0.452 4.084
250 - 1000 -1.850 1.262 -1.466 168 0.145 -4.341 0.641
1000 -0 3.162 1.223 2.587 168 0.011 0.749 5.576
1000 - 50 3.666 1.207 3.037 168 0.003 1.283 6.049
1000 - 250 1.850 1.262 1.466 168 0.145 -0.641 4.341
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Chapter 5

5 ;

Day }:z)i?r/lvl&:st;eca(:nmt?:;t Coptrast SE t df  Adj. sig. 93% confidence interval
(mg/kg dry wt.) estimate Lower Upper

0-50 0.886 0.895 0991 168 0.323 -0.880 2.653

0-250 -1.592 0971 -1.640 168 0.103 -3.508 0.324

0-1000 -4.271 1.046 -4.083 168 6.875E-05 -6.337 -2.206

50-0 -0.886 0.895 -0.991 168 0.323 -2.653 0.880

50 -250 2478 0944 -2.625 168 0.009 -4.342 -0.614

50 - 1000 -5.158  1.022 -5.048 168 1.154E-06 -7.175 -3.141

4 250-0 1.592 0971 1.640 168 0.103 -0.324 3.508

250 -50 2.478 0.944 2.625 168 0.009 0.614 4.342

250 - 1000 -2.680 1.089 -2.461 168 0.015 -4.829 -0.530

1000 -0 4271 1.046 4.083 168 6.875E-05 2.206 6.337

1000 - 50 5.158 1.022 5.048 168 1.154E-06 3.141 7.175

1000 - 250 2.680 1.089 2461 168 0.015 0.530 4.829

Table S6. Overall generalized linear mixed models test results for “Treatment X Day” effect on

Gammarus pulex avoidance.

Day F dfl  df2 Sig.

2 11.084 3 168 1.122E-06
3 3.567 3 168 0.015
4 9.433 3 168 8.541E-06
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Table S7. Estimated means of target variable (Individuals in control section) for “Treatment X Day”
effect on Gammarus locusta avoidance in the first marine experiment (MW1).

95% confidence interval

DMA treatment
(mg/kg dry wt.) Day  Mean — SE Lower Upper
2 7.536  0.369 6.812 8.261
0 3 7.113  0.372 6.382 7.844
4 7.041 0.332 6.389 7.692
2 7.759 0.374 7.024 8.495
50 3 7.133  0.372 6.401 7.865
4 7.502 0.342 6.829 8.174
2 8.106 0.382 7.354 8.857
250 3 7.505 0.382 6.754 8.256
4 6.711 0.324 6.075 7.347
2 10.140 0.428 9.300 10.981
1000 3 9.123  0.421 8.295 9.951
4 7.712  0.347 7.030 8.394
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Table S10. Estimated means of target variable (Individuals in control section) for “Treatment X Day”
effect on Gammarus locusta avoidance in the second marine experiment (MW?2).

DMA treatment 95% confidence interval
Day Mean SE
(mg/kg dry wt.) Lower Upper
2 7995 0.369 7.270 8.720
0 3 7355 0416 6.537 8.174
4 7.897 0.403 7.104 8.689
2 7.662 0.361 6.952 8.371
50 3 7.184 0412 6.375 7.993
4 7.583 0.395 6.807 8.360
2 7994 0.369 7.269 8.718
250 3 7.589 0.423 6.757 8.420
4 8378 0415 7.561 9.194 5
2 8.182 0373 7.448 8.915
1000 3 6.787 0.400 6.001 7.574
4 7.527 0.39%4 6.754 8.301
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Table S13. Estimated means of target variable (Individuals in control section) for “Experiment X
Treatment X Day” effect on Gammarus locusta avoidance (MW 1 and MW2 experiments).

Experiment DMA treatment Day Mean SE 95% contidence interval
(mg/kg dry wt.) Lower Upper
2 7443 0381 6.695 8.192
0 3 7.027 0.3% 6.253 7.801
4 7159 0.379 6.414 7.903
2 7.682 0.388 6.921 8.443
50 3 7.197 0.399 6.414 7.981
MWI 4 7396 0.386 6.639 8.153
2 8206 0.401 7.420 8.992
250 3 7495 0407 6.696 8.295
4 7257 0.382 6.507 8.007
2 9918 0.440 9.053 10.782
1000 3 9.099 0.449 8.218 9.980
4 7.674 0393 6.903 8.444
2 7952 0.39% 7.178 8.726
0 3 7422 0405 6.626 8.218
4 7.01 0.393 6.928 8.473
2 7.644 0387 6.885 8.403
50 3 7.058 0.395 6.282 7.834
4 7.684 0.393 6.913 8.456
MW2
2 8.068 0.397 7.288 8.847
250 3 7.584 0410 6.779 8.388
4 8.194 0.406 7.398 8.991
2 8.085 0.398 7.305 8.866
1000 3 6.872 0.390 6.106 7.637
4 7.555 0.390 6.790 8.320
178
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Chapter 5

Table S15. Overall generalized linear mixed models test results for “Experiment X Treatment X Day”
effect on Gammarus locusta avoidance (MW 1 and MW?2 experiments).

Exﬁng;“iff; Day F  dfl df2 Sig
2 0859 1 816 0354

0 30488 1 816 0485
4 098 1 816 0322

2 0005 1 816 0945

50 30061 1 816 0805
4 0274 1 816 0.601

2 0060 1 816 0.806

250 30023 1 816 0878
4 2827 1 816 0.093

2 9538 1 816 0.002

1000 314026 1 816 0.000
4 0046 1 816 0831
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Table S16. Estimated means of target variable (Individuals in control section) for “Experiment X
Treatment X Day” effect on Gammarus pulex (FW experiment) and Gammarus locusta avoidance
(MW1 and MW?2 experiments).

. DMA treatment 95% confidence interval
Experiment (mg/kg firy \:t.) Day Mean SE Lower Upper
2 7.688 0.639 6.434 8.942
0 3 8.498 0.674 7.174 9.821
4 7.810 0.658 6.520 9.101
2 7.800 0.644 6.537 9.063
50 3 7.991 0.654 6.707 9.274
W 4 6.644 0.607 5.454 7.835
2 10.093 0.732 8.656 11.530
250 3 9.784 0.724 8.364 11.204 5
4 9.249 0.716 7.844 10.653
2 12.819 0.825 11.199 14.438
1000 3 11.663  0.790 10.112 13.214
4 11.802 0.808 10.215 13.388
2 7.467 0.412 6.659 8.276
0 3 7.024 0.392 6.255 7.793
4 7.159 0.379 6.414 7.903
2 7.709 0.418 6.888 8.530
50 3 7222 0.397 6.443 8.002
MW 4 7.396 0.386 6.639 8.153
2 8.190 0.431 7.344 9.036
250 3 7.506 0.405 6.711 8.300
4 7.257 0.382 6.508 8.007
2 10.026 0.477 9.090 10.963
1000 3 9.111 0.446 8.236 9.987
4 7.674 0.393 6.903 8.444
2 7.905 0.424 7.074 8.737
0 3 7.402  0.402 6.612 8.191
4 7.701 0.393 6.929 8.473
2 7.601 0.415 6.785 8.416
50 3 7.079 0.393 6.307 7.851
4 7.684 0.393 6.913 8.456
MW2
2 7.985 0.426 7.149 8.820
250 3 7.598 0.407 6.798 8.397
4 8.194 0.406 7.398 8.991
2 8.154 0.430 7.309 8.998
1000 3 6.845 0.387 6.086 7.604
4 7.555 0.390 6.790 8.320
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Table S18. Overall generalized linear mixed models test results for “Experiment X Treatment X Day”
effect on Gammarus pulex (FW experiment) and Gammarus locusta avoidance (MW 1 and MW2

experiments).
]()nﬁ;ig“f;‘;“ifg Day F  dfl dR2  Sig
2 0.275 2 984 0.760
0 3 1.784 2 984 0.168
4 0.642 2 984 0.526
2 0.038 2 984 0.963
50 3 0.731 2 984 0.482
4 1.036 2 984 0.355
2 3.265 2 984 0.039
250 3 4.124 2 984 0.016
4 3.455 2 984 0.032 5
2 13.590 2 984 1.507E-06
1000 3 17.783 2 984 2.588E-08
4 12.033 2 984 6.873E-06
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Chapter 6

Introduction

In the Arctic, combined effects of climate change and globalization will increase oil and gas
(O&G) exploration prospects. This will lead to more O&G and shipping activities [337]
causing higher risks of pollution (Figure 1). In Norway and Russia, oil production from
existing offshore wells will likely increase in the Barents Sea and Pechora Sea, and Arctic
shipping routes such as the Northern Sea Route along the Russian coast are expected to be
used more frequently. Such activities will be subjected to sea ice, strong winds and currents,

which may enhance the risk of accidents during O&G transport [338] (Chapter 1).

L LTSS

Figure 1. Arctic oil and gas production wells in 2013. Source: http://wwfarcticmaps.org/

Until now, environmental risks of O&G activities in the Arctic have mainly been evaluated
using a conventional environmental risk assessment approach (Figure 2). For instance,
threshold values for effects have been established based on species sensitivity distribution
(SSD) curves for sub-cellular biomarker responses in water exposed species and for whole
organism responses [339,340]. On the Norwegian Continental Shelf, environmental risk
assessment of produced water (PW) involves the traditional steps in risk assessment (Figure
2). These are derived from the European Commission [341], and commonly using oil

dispersions as proxies for PW and other crude oil discharges. Such conventional approaches
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mainly apply to the water column. So far, specific approaches to assess risks for benthic

systems in the Arctic have not been defined.

4

Problem formularlon
*Protection goal
| *Assessment endpoint
| *Decision threshold

"

| Exposure assessment
| *Transport

| *Fate
*Behaviour
L Bloaccumulatlon

A

3

Effects assessment —L

*Toxicity (acute, chronic, '

lethal, sublethal)
«Indirect effects

N S

Risk characterization ‘
*Risk quotient

P

*Secondary poisoning

s

Exceed trigger value |

| o
Acceptable risk

Figure 2. Environmental risk assessment process. Source: Maltby [342].

Current programmes monitoring the impacts of O&G activities on the Arctic parts of the

Norwegian Continental Shelf include the water column and benthic habitats [343]. According

to the Norwegian Environment Agency, both need to be surveyed every three years in both

regional and field-specific stations of the same geographical region. A minimum of three

wild-caught fish species and caged mussels are usually recommended for monitoring of

exposure and effects in the water column [343]. As for the monitoring of benthic habitats,

only the taxonomic identification and species density are required. In the Barents Sea,

monitoring of benthic habitats in the Barents Sea South region is planned to start in 2019.

Polycyclic aromatic hydrocarbons (PAHs) are often used as indicators of oil related pollution

[14], as petrogenic PAHs are enriched in weathered oil and reside in sediment with oil-

specific chemical signatures [23,43,120]. Oil does not behave identically to PAHs in the

marine environment, especially when it concerns fate processes. However, PAHs can be

considered a major fraction contributing to the toxicity of oil. Therefore, in this thesis, several

chapters are focused on the behaviour and effects of PAHs (Chapters 2-4), whereas one

chapter studies a widely used gas oil; Distillate Marine grade A (DMA; Chapter 5).
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Chapter 6

As specified before, there is a high need for Arctic specific approaches and monitoring. To
achieve this, the evaluation of environmental risks of O&G activities in the Arctic should take
into account the specific physiology of Arctic species and environmental characteristics.
Furthermore, the uncertainty of exposure pathways of oil related compounds should be
addressed. In this thesis, four potential tools for the monitoring and risk assessment of O&G
impacts on Arctic benthic species were addressed: (1) the use of biota-sediment accumulation
factors (BSAFs) as indicators for sediment PAH bioavailability (Chapters 2,3), (2) the
applicability of biomarkers of exposure (Chapter 4) and (3) the suitability of
biotransformation metabolites in Arctic benthos chronically exposed to PAHs (Chapter 4),
and (4) the relevance of avoidance tests as a tool for oil impact assessment (Chapter 5).
These four methods were used to identify potential bioindicators for O&G and shipping
related chemical stress in Arctic coastal benthic systems. For these tools six research

questions were described (Chapter 1), which are discussed below.

Q1: Can PAH body residues or BSAFs be used as bioavailability indicators in Arctic

coastal benthic systems and which target species is most suitable to detect trends?

In this thesis, bioaccumulation from sediment was evaluated under field (Chapter 2) and
laboratory conditions (Chapter 3). The results showed that PAH partitioning deviated from
what can be expected from Equilibrium Partitioning Theory (e.g., BSAF having a value of 1-2
[82]). This was explained by the presence of black carbon in the sediment, a bioaccumulation
non-equilibrium, experimental variability or by any combination of these factors. This led to
both lower and higher BSAF values than the range predicted by the Equilibrium Partitioning
Theory.

In the field study (Chapter 2), significantly higher BSAFs were found in individuals from all
species collected at a reference area (Blomstrandhalveya) compared to those collected at a
relatively impacted area (Ny-Alesund). This was mostly ascribed to a higher abundance of
black carbon in Ny-Alesund sediment. For the majority of PAH compounds, body residues
differed significantly between species. In Ny-Alesund, body residues were highest in M.

calcarea compared to body residues in A. borealis and N. ciliata.

In the laboratory study (Chapter 3), significantly higher BSAFs (i.e., for 3-ring PAHs) and
body residues (i.e., for 3- and 4-ring PAHs) were observed in 4. borealis than in N. ciliata.
This was explained by a difference in feeding activity between these species and by a higher

content in black carbon and amorphous organic matter in the polychaetes than in the bivalves
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sediment treatment that may have resulted in a lower bioavailability and thus lower PAH

uptake in N. ciliata.

In the literature, many examples apply body residues and/or BSAF values as indicators for
bioavailability and bioaccumulation (e.g., [56,80,82]). However, deviations from BSAF
values of 1-2 have also been reported frequently, sometimes limiting the applicability of
BSAF as an unambiguous and reliable monitoring metric. This is also seen in the present
research, where BSAFs were observed to vary widely. This means that the present work
confirms the limited applicability of BSAF values as a relevant metric for biomonitoring in

the Arctic as well.

As for body residues, also many literature reports exist where biomonitoring is based on
concentrations in organisms over time and space [344,345]. When lipid-normalised, these
concentrations are a more pure descriptor of bioavailability and bioaccumulation as they
directly reflect exposure on the individual level. Furthermore, body residues can be compared
directly with lipid based toxicity thresholds (e.g., the critical body burden — CBR — concept,

see Chapter 2), which is a well-established approach in environmental risk assessment [154].

Based on the above, I conclude that PAH body residues provide a more realistic estimate of
the bioavailable PAH fraction than BSAFs. This also implies that body residues are a better
estimator of exposure in the context of effect- and risk assessment in Arctic benthic
communities than BSAFs. Therefore, body residues are more suitable to derive relevant
environmental quality standards for Arctic species. However, BSAFs are still useful indicators
to help detect possible mechanisms affecting body residues, like for instance, variability in
organic matter composition (e.g., black carbon), biomagnification and/or non-equilibrium as

mentioned above.

Of all evaluated species I recommend Macoma calcarea as target species being most suitable
to detect trends. This is based on its ability to accumulate PAHs in low impacted areas (e.g.,
Ny-Alesund), regardless of their body size, and on their selective feeding mode, which
decreases the variability of body residues measured in the species (Chapter 2). Recently, M.
calcarea also was suggested as an ecological indicator in the context of developing trait-based
approaches to explore changes in rapidly changing ecosystems [346]. However, in the absence
of M. calcarea a similar method can be applied to select the next suitable indicator organism,
using the criteria from Chapter 1. For instance, Nuculana pernula would be the closest

species based on its traits (Chapter 3).
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Recommendations. Because of the extensive variability in BSAFs and body residues it is
recommended to minimize experimental variability. This can be achieved by enhancing
sediment homogeneity, representativeness and uniformity of test animals taken from the field,
quality and homogeneity of food supply, in laboratory tests with Arctic species. Standardized
sediment toxicity testing [347] can be used to further develop protocols for Arctic benthic
testing. A limiting practical factor is the presence of often less elaborated laboratory facilities

for Arctic research that has to be dealt with.

A second recommendation is to further explore the relation between bioaccumulation (body
residues) and environmental factors (e.g., temperature, particulate organic carbon,
contaminant concentration) through multivariate statistical techniques [315,348-350] and

based on this develop bioaccumulation models and scenarios for exposure testing.

A final recommendation is to apply the suggested biomonitoring tool, that is, use M. calcarea

to detect trends and spatial differences in Arctic areas with O&G related pollution gradients.

Together, this will provide necessary information on spatial and temporal scales of gradients
in bioaccumulation in the Arctic. When sediments need to be sampled for laboratory exposure
experiments, such information on spatial heterogeneity in chemical exposure can be used to

select sampling locations for these sediments.

Q2: Can species traits explain differences in PAH bioaccumulation between Arctic

benthic invertebrates?

In this thesis, bioaccumulation was explored for species with different traits under both field
(Chapter 2) and laboratory conditions (Chapter 3). The uncertainty in bioaccumulation
metrics (BSAFs, body residues) was large, especially in the laboratory data. In the field study
(Chapter 2), a higher bioaccumulation of PAHs was observed for M. calcarea in Ny-Alesund
compared to A. borealis and N. ciliata. This was explained by the high preference for freshly
deposited organic matter, higher ingestion rate and lower PAH excretion capacity of M.
calcarea. In the laboratory study (Chapter 3), a lower bioaccumulation of PAHs was
observed for M. calcarea compared to A. borealis and N. ciliata. This was explained by a
general decrease of PAH uptake and metabolic rate in M. calcarea under laboratory
conditions. This decrease of uptake can be explained from the high diet selection of M.
calcarea [211]. The decrease in metabolic rate can possibly be explained from the metabolic

rate depression experienced by Arctic bivalves during starvation periods [351]. This illustrates
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how laboratory settings can yield quite different results when compared to observations from

field data.

According to the literature, bioaccumulation is strongly influenced by exposure routes, which
in turn are determined by species traits, such as the feeding mode, ingestion — egestion rates,
capability to metabolise chemicals, and diet composition [56,83,274,352,353]. Validated
models are available to quantify the link between these traits and bioaccumulation
[56,80,354]. For Arctic ecosystems, it has been reported that different benthic groups respond
differently to the seasonality in the abundance of organic matter [127]. However, according to
Wiodarska-Kowalczuk et al. [355], a relatively high abundance of macroalgal detritus in the
Kongsfjorden system makes benthic organisms less sensitive to the seasonality in pelagic
production. Under such conditions of abundant food supply, differences in bioaccumulation
will be mostly explained by other factors, such as the species’ ability to metabolize and

excrete PAHs.

Based on the aforementioned literature data and data from this thesis, I conclude that
bioaccumulation is also dependent on species traits in Arctic species. The link between
species-specific feeding mode and bioaccumulation was mechanistically explained using
models (Chapter 3). However, the model’s statistical significance remained limited as
compared to earlier model evaluations, because of the considerable residual error between

observations and model predictions.

Recommendations. Because of the high variability in BSAFs and body residues, it is
recommended to reduce experimental variability. This will increase the rigour of tests that aim
to detect differences in bioaccumulation among species with different traits, as well as the

significance of models aimed at mechanistically explaining the observations.

To be able to explain differences in bioaccumulation among species from the field, the
characteristics relating to quality and quantity of organic matter in all different diet
components (e.g., sediment and freshly deposited organic matter) need to be determined. This
includes quantifying organic matter, black carbon, oil and other possible solid components

involved in binding hydrophobic chemicals.

Finally, it is recommended to assess bioaccumulation for a wider range of species in the field,
together with community composition and sediment characteristics at the sites of interest.

This will allow to study bioaccumulation patterns over time and space, for a much wider
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range of species traits, including improved opportunities for mechanistic modelling.
Furthermore, this allows for establishing causal relationships between bioaccumulation and

community composition in situ.

Q3: Does bioaccumulation of PAHs differ between Arctic and temperate benthic
invertebrate species with different traits, and can modelling assist in reading across

between species?

In my research, no significant differences were observed in PAH body residues and BSAFs
between Arctic and temperate benthic species under laboratory conditions (Chapter 3). This

was mainly due to the substantial biological variability in the data.

Little is known about bioaccumulation of PAHs from sediment by Arctic benthic species,
compared to bioaccumulation by temperate species. To my understanding, no studies have
been published on the direct comparison of bioaccumulation by Arctic versus temperate
benthic species. Two studies report PAH body residues in Arctic benthic species [121,356].
One of these studies included the modelling of bioaccumulation factors (BAFs) in blue
mussels obtained from literature to infer sea water concentrations [121]. In this sense, this
study (Chapter 3) is the first attempt to compare and to model bioaccumulation in similar

Arctic and temperate benthic species.

Hypotheses were provided based on published differences in species traits with relevance for
bioaccumulation. For instance, feeding rate, clearance rate and digestion rates often are lower
in Arctic species [213,357,358], that may affect both bioaccumulation and risks. These
differences were not observed in our experiments, due to the fact that they were probably

smaller than the current variability in the data (Chapter 3).

For temperate species, the use of biodynamic modelling has helped to provide a mechanistic
understanding of bioaccumulation processes [56,83]. The models can also be used to predict
PAH bioaccumulation in the absence of experimental data [203], and to read across species,
compartments (freshwater vs marine) and potentially climate regions. Examples of modelling
of contaminants across temperate and Arctic pelagic species are provided by some studies
[359,360]. These studies concluded that bioaccumulation in the Arctic may be described in
the same way as bioaccumulation in temperate regions. In this thesis, however, dynamic
simulations among species with similar traits and exposed to PAHs under laboratory

conditions did not reveal any clear differences in the model parameters between species or
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tests. This was due to the substantial variability in the biological control data and the

similarity in exposure routes (Chapter 3).

Despite the lack of significant differences in PAH bioaccumulation between Arctic and
temperate species in our study, I argue that differences between Arctic and temperate species
can be detected if more rigorous testing methods are applied in these tests, and/or if other

selections of species, individuals or sediments would be used in these tests.

Recommendations. As specified above, there is a need to improve the accuracy of
bioaccumulation testing. This can be achieved by a series of measures, such as the use of non-
exposed test animals, artificial sediment, a higher number of replicates and time points, and/or

a more constant food addition.

These improvements will also increase the applicability of bioaccumulation models and lead
to more certain parameter values. Additionally, several model parameters need to be measured
in an experimental set up, in order to increase the reliability of bioaccumulation models for
Arctic species (such as growth and feeding rates of species). To get a better understanding
when comparing Arctic and temperate species, specific tests can be done where sediments
either are identical for both Arctic and temperate species, or a suitable representative of the
region’s sediment type. The tests can be done with Arctic and temperate species at the same
temperature, or at temperatures specific to Arctic and temperate conditions. This way the
relative importance of both temperature and sediment properties can be identified which helps

to further elucidate potential differences among species and regions.

Q4: What is the feasibility of using biomarkers of exposure to monitor PAH pollution in

the Arctic? Is the identification of biotransformation metabolites a better alternative?

For an integrated monitoring and assessment programme for the Arctic, biomarkers and
bioassays need to be tested and validated in Arctic organisms that are representative for the
water and sediment compartment [91,361]. For the benthic compartment, benthic
invertebrates may fulfil the role of bioindicators of chemical pollution, just as fish species do
for the water compartment [343,362]. In this respect it is essential to causally link chemical
body residues and biomarkers measured at different suborganismal levels (Figure 3), in order
to increase the interpretative value of individual measurements [345]. Therefore, in my study,

I analysed both PAH body residues and biomarkers of exposure/effect in target species.
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Figure 3. Continuum from chemical exposure to organism level effects. Source: Chapman et
al. [363].

For an integrated exposure an effect assessment (Figure 2), two biomarkers of PAH exposure
(i.e., acyl-CoA oxidase [AOX] and glutathione S-transferase [GST]) and one biomarker of
neurotoxicity (i.e., acetylcholinesterase [AChE]) in 4. borealis were addressed (Chapter 4).
GST and AChE have been validated in temperate bivalves before. They are commonly used in
the assessment of oil impact [364] and pollution monitoring [365], whereas AOX generally
shows a rapid response to PAH exposure in temperate bivalves [279,281]. In the present
work, interpretation of enzymatic biomarkers data in 4. borealis was limited. This is because
either baseline studies are lacking for Arctic benthic species [215], or these biomarkers were

assessed in water exposed rather than sediment exposed Arctic benthic organisms [366,367].

Pyrene metabolites, and particularly 1-hydroxypyrene, have been used before as a suitable
biomarker of PAH exposure in temperate species [368,369]. Our study made the first multi-
species comparison of pyrene biotransformation between Arctic and temperate benthic
invertebrates (Chapter 4). This was done to estimate differences in their biotransformation
capacity as well as to validate the use of 1-hydroxypyrene and pyrene-1-glucuronide [183] as

biomarkers of PAH exposure in Arctic species.

Unlike pyrene body residues, a significant increase in the concentration of pyrene-1-
glucuronide was observed in polychaetes exposed to the high sediment treatment compared to
the low sediment treatment (Chapter 4). This increase was not detected in bivalve species. In
polychaetes, biotransformation rates did not vary between treatments in our study. This was
illustrated by the similar relative concentrations of pyrene-1-glucuronide in polychaetes
exposed to the different sediment treatments, implying biotransformation also at low
concentrations. As for enzymatic biomarkers, there was no correlation between the activity of
biomarkers in 4. borealis and PAH contamination levels in sediment treatments (Chapter 4).
This could mainly be explained by the low PAH contamination levels in A. borealis, although

the influence of confounding factors [134,283] could not be excluded. There is a lack of
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knowledge on pyrene metabolites in Arctic invertebrates and the use of biomarkers in Arctic

invertebrates in general [213,370].

Based on the available literature data and data from this thesis, I conclude that the analysis of
pyrene metabolites provides a feasible approach to assess PAH exposure in Arctic benthic
populations. However, it would be advisable to review the sensitivity of additional biomarkers
of exposure and biomarkers of effect in order to develop a further weight-of-evidence

approach.

Recommendations. In order to provide a more robust and integrated assessment of PAH
exposure in Arctic species, the ability of different markers of exposure needs to be evaluated
to provide an early warning of risks on PAH mediated biological effects. This can be achieved
by exploring the relative effect of environmental and biological factors on the activity of
biomarkers with respect to PAH exposure [275]. The natural metabolic activity and seasonal
dynamics of biomarkers in Arctic species are needed to be able to determine relevant
biomarker responses in Arctic benthic invertebrates to PAH exposure in the field. Finally, our
findings illustrate that Arctic benthic macroinvertebrates have a biotransformation capacity,
which should not be overlooked when evaluating accumulation and risks of PAHs in the

Arctic [93,94].

QS: Can behavioural tests like avoidance behaviour become a suitable monitoring tool

for oil impact assessment in the Arctic?

In my research, a significant avoidance of DMA oil-spiked sediment was observed at 1000
mg/kg (dry weight). Furthermore, it was shown that for the freshwater species G. pulex this
occurred within an exposure time of 96 h, whereas for the marine species G. locusta in one of
two tests, this occurred within an exposure time of 72 h (Chapter 5). Hence, this shows that
the tests are able to detect behavioural effects of gammarids to DMA oil, as well as a time

dependency of these effects.

Differences in time dependency of avoidance behaviour between the two species, were
explained by the experimental conditions (i.e., water parameters, feeding) on the species’
sensitivities to DMA oil and to their ability to maintain active over time. The sensitivity to
detect DMA oil was explained by a higher ventilation rate, caused by the exposure of G. pulex

at its upper thermal tolerance limit (i.e., 15 °C). As for G. locusta, the ability to detect and
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avoid DMA may have been restricted by a higher salinity in the marine experiments and low

feeding potential.

Within-species differences in the avoidance response of G. locusta among tests were
considerable, thereby limiting the rigour of the test (Chapter 5). This variability may have
been related to the variability among individuals used in the tests. This originates from
differences in structural growth and reproductive status of the tested individuals, as observed

more often among summer G. locusta generations [327,329].

In the literature, behavioural endpoints such as the avoidance response to oil of benthic
organisms have been proposed before as a tool to detect sublethal effects of oil in sediment
[99,304-306]. Studies on the avoidance behaviour of oil-contaminated sediment by temperate
marine amphipods [298] and of PAH-spiked sediment by temperate freshwater invertebrates
[100] showed that avoidance behaviour was not affected by the background exposure history
of the organisms to either oil or PAHs, and that avoidance tests could be used as an alternative
to chronic toxicity testing. These studies also concluded that homogeneity in exposure

conditions (e.g., sediment characteristics, feeding) or in test species individuals is crucial.

Variability among individuals may be less for Arctic species than for temperate species.
Variability in energy levels of organisms is likely to affect avoidance behaviour [322,371].
Energy levels are affected by environmental factors (e.g., temperature and salinity [335,372])
and biological variables (e.g., structural growth rate [313,333,372] and reproductive status
[327,329,372]). Some Arctic benthic marine amphipods (e.g., Gammarus setosus) show less
variability than G. locusta with regards to a longer life-span and fewer reproductive events
[373]. Based on this, G. sefosus may be a suitable candidate species for effective avoidance

tests for Arctic sediments exposed to oil.

Given the above, I conclude that avoidance tests are suitable for monitoring oil impact in
temperate regions, whereas their applicability in the Arctic is likely but needs more

investigation.

Recommendations. The avoidance tests need to be validated with Arctic species under Arctic

conditions prior to implementation.
I suggest the use of immature adult G. setosus collected during early spring for the avoidance

tests (i.e., March-April) [373]. During this period, G. setosus synchronizes its activity with the

198

Ariadna Szczybelski Thesis Headers.indd 198 @ 26-09-18 09:25:09



Chapter 6

spring bloom [374,375] and water parameters are stable [62]. Immature adults will limit its

energy allocation to acclimation and growth, and start building up energy reserves.

Finally, several aspects of the test conditions can be further improved. For instance, sediment
oxygen demand may be used to evaluate the physiological state of individuals during tests,
and the applicability of these tests at low PAH exposure level [104,259]. Similarly, the

homogeneity of sediment characteristics and feeding can be considered for an optimised test.

Q6: What are prospects and advantages of using Arctic benthic bioindicator species for
monitoring long-term impacts of O&G and other maritime activities in the Arctic?
Here the prospects and advantages of using Arctic benthic bioindicator species are discussed

based on the criteria provided in Chapter 1:

1. Tts response is sensitive to changes in the chemical concentration;

2. Its response is specific and causally related to the chemical exposure;

3. Its response is adequate given the anticipated concentration of the chemical;

4. The species’ uptake/elimination of the chemical can be quantified;

5. The toxic effects of the chemical can be measured/interpreted.
These criteria, based on Goodsell et al. [19], do not necessarily need to apply to every single
aspect measured on a bioindicator species. For instance, measuring a biomarker of exposure
can be meaningful in the context of biomonitoring, even without measuring the response of a
biomarker of effect (criterion 3).
As for the first two criteria, the correlation between bioaccumulation of PAHs and PAH
exposure levels was tested for species with different traits under field conditions (Chapter 2).
It was suggested that exposure was lower in the presence of black carbon, thus implying a
positive correlation between exposure and uptake. However, the causality of bioaccumulation
changes could also be explained by the species’ feeding traits as was shown under
experimental conditions (Chapter 3). In that respect, M. calcarea can be used to detect spatial
and temporal gradients in bioaccumulation in the Arctic due to its selective feeding mode
(Qn).
As for the third criterion, confounding non-target chemicals or environmental conditions have
to be taken into account. The causality of the interrelationships between biomarkers at
different suborganismal levels needs to be established for the bioindicator candidates (Figure
3; [376]). This is needed for the validation of the bioindicator species as these relationships

will be used to select appropriate biomarkers which can provide early warning/are indicative
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of PAH biological effects. In my research, a direct causality between the concentration of
pyrene body residue and the rate of pyrene biotransformation was not found in M. calcarea

(Chapter 4).

In addition, for the actual validation of M. calcarea as a biomonitoring species, future studies
should address the combined effects of relevant oil chemical components and environmental
factors on biomarker responses [361]. Although a long-term strategy is essential for such
studies [377], the use of Arctic region specific environmental quality standards in an
integrated monitoring and assessment programme is essential for the understanding of the
dynamics of toxicants and their effects on Arctic marine ecosystems [345]. This implies that
much work is still needed (e.g., see Q4) and that the present study is only a first start for what

is needed to fully develop a validated system for biomonitoring in the Arctic.

The adaptation of existing methodology to Arctic species and conditions may form a suitable
base for the environmental risk assessment of O&G and shipping activities in the Arctic, and
the use of Arctic benthic bioindicator species is feasible and highly necessary for the

prediction of long-term impacts of such activities on Arctic benthic habitats.
Conclusion

For the selection of relevant bioindicators for O&G impact assessment in the Arctic, sediment
tests can be used in combination with chemical data and biomarkers measured in the organism
collected in situ as part of an integrated weight-of-evidence approach. Bioaccumulation
testing requires the implementation of more standardized methods for sediment preparation,
exposure conditions and acclimatization of field organisms (Q3). A better understanding of
the natural variability in biomarker responses in Arctic species is also needed in combination

with the influence of environmental confounding factors (Q4).

With a few exceptions, it is not common to find all properties of a good bioindicator in one
single species. Thus, different species may be used in the evaluation of different sublethal
endpoints. This also accounts for the selection of biomarkers. A single biomarker response is
generally not adequate, but a suite of biomarkers can be used to indicate early effects of
exposure (as in this thesis) and/or effects of a toxicant. Biomarkers present early warning
information that biodiversity indicators, such as biotic indexes, do not offer. Biomarkers of

exposure are closely related to chemical stress, while biodiversity indicators are not specific
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and may indicate all kinds of different stressors. Hence, biomarkers may enable mitigation

measures before irreversible impacts occur.

In this thesis, M. calcarea was selected as a potential bioindicator species for O&G impact
assessment in the Arctic (Q2). In short, M. calcarea was able to accumulate PAHs at a low
exposure level under field conditions, although the species showed a variable level of pyrene
metabolization under laboratory conditions. This was mostly related to experimental
conditions, but potentially also to the likely variability in the physiological state of M.
calcarea individuals. Its capacity for the excretion of PAH metabolites was low. Although the
actual metabolization and excretion of PAHs still need to be further tested, the retention of
PAH metabolites at a low exposure level in M. calcarea makes it worthwhile to study the
implementation of several biomarkers with temporal differences in their response and

differences in their effective dose.

A bioindicator like M. calcarea could be incorporated into a signalling system. Signalling
systems can be seen as a weight-of-evidence approach, being an integrative index based on
biomarkers that allow us to classify sampling sites with respect to their pollution status. For
instance, the Integrated Biomarker Response (IBR) [378] is a mathematical tool based on
biomarker data standardisation and their aggregation into a single value. Other approaches
like the Integrated assessment of hazardous substances in the Baltic Sea (CHASE tool)
combine chemical and biological measurements. Such approaches may reduce the uncertainty
in interpretation of biomarker responses and can be used for regular and impact-specific

biomonitoring.

A crucial part of such a signalling system is a solid knowledge on the baseline levels. Such
baseline studies need to characterize natural levels in PAH body residues and biomarker
responses commonly recommended for biomonitoring and to evaluate the sensitivity to oil
pollution in these Arctic species. Furthermore, baseline studies help to identify the strengths
and limitations for application of biomarkers to (sub-)Arctic regions as well as to determine
their seasonal variability in potential bioindicator species. Seasonality may result in particular
physiological characteristics of Arctic species that affect their toxic response to oil and PAHs
(e.g., seasonality in lipid reserves). In addition, environmental fluctuations in the light regime
and temperature may affect the bioavailability and exposure to oil-related chemicals. Baseline
studies using bioindicator species will help to better characterize the general mechanisms and

patterns underlying negative effects of O&G and shipping activities.
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The overall utility of this work consists of a first evaluation of promising candidate species for
Arctic biomonitoring and research programmes, and of various alternative approaches for the
early identification of negative ecological impacts of O&G and shipping in Arctic benthic

bioindicators.

Particularly, this thesis proposed one potential benthic bioindicator species (M. calcarea) and
one potential tool (avoidance tests) for the assessment of oil impacts on sediment for its
further validation under Arctic conditions. It also underlined the need for standard sediment
test protocols and baseline studies as an integral part of environmental risk assessment in the
Arctic, and provided several recommendations based on existing guidelines and a comparative

study of bioaccumulation data from field and laboratory studies with Arctic species.
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Summary

Expanding oil and gas (O&G) and shipping activities in the absence of sufficient baseline data
on the sensitivity of Arctic marine biota to oil related compounds makes environmental risk
assessment for the Arctic challenging. Delayed oil weathering and biodegradation, ecological
seasonal variations or a delayed manifestation of toxicity in Arctic marine biota could create
differences between the susceptibilities of Arctic and temperate monitoring species in the long
term. Such differences may be better defined in estuarine or shallow areas, where the frequent
resuspension of sediment and strong affinity of oil for sediment organic matter suggest that a
large proportion of oil compounds will be transferred to the seafloor, increasing exposure of
benthic organisms. Arctic benthos, and in particular sediment-dwelling organisms, can be
applied as relevant and sensitive bioindicators of chemical stress and are important food
sources for higher trophic levels. In addition, Arctic benthic organisms may benefit from the
projected increase in phytoplankton primary production under climate change, strengthening
the pelagic-benthic coupling and trophic transfer efficiency within Arctic marine ecosystems.
Their intrinsic ecological value calls for the evaluation and validation of oil toxicokinetic
parameters in Arctic benthos as part of current oil risk assessment procedures and monitoring
programmes. Such knowledge may form an important basis for the selection of relevant
Arctic benthic bioindicators of long-term environmental impacts of O&G and shipping

activities.

The aim of this thesis is to develop a suite of candidate exposure methods, including
bioaccumulation and biochemical markers, for the identification of bioindicators of chemical
stress derived from O&G and shipping in Arctic coastal benthic systems. The second aim is to
propose, based on experiments with temperate species, the avoidance of oil contaminated

sediment by Arctic benthic amphipods as an oil risk assessment tool for the Arctic.

In Chapter 2, the applicability of biota-sediment accumulation factors (BSAFs) as chemical
exposure metric was evaluated in three representative species of an Arctic coastal benthic
system under field conditions. In a preliminary round, target species were selected based on
their feeding mode, reduced motility and relative abundance. Two bivalves, the suspension
feeder (Astarte borealis) and the surface deposit and suspension feeder (Macoma calcarea),
and one polychaete, the predator and deposit feeder (Nephtys ciliata), were selected. These
species and corresponding sediment samples were collected at a reference area

(Blomstrandhalveya) and a relatively oil impacted area (Ny-Alesund) to study the influence of

227

Ariadna Szczybelski Thesis Headers.indd 227 @ 26-09-18 09:25:39



Summary

local sediment components on the bioaccumulation of polycyclic aromatic hydrocarbons

(PAHs), polychlorinated biphenyls (PCBs) and hexachlorobenzene (HCB).

Bioaccumulation differences were detected between both areas for PAHs, with higher 10-90th
Y 13PAH BSAF percentiles (i.e., 0.35 — 5.50) in Blomstrandhalveya than in Ny-Alesund
organisms (i.e., 0.00 — 0.07). Differences in the quality of organic matter in sediment and
other food items probably affected the sediment ingestion and thus, PAH uptake by organisms
from different areas. However, similar patterns across sampling areas were observed in M.
calcarea based on ) 13PAH body residues, with higher lipid-normalised concentrations in Ny-
Alesund specimens. This pointed at possible differences in toxicokinetic parameters such as
PAH uptake and elimination, and higher preference for biogenic organic matter sources for M.
calcarea as compared to the other species. It was concluded that PAH body residues provide a
more realistic estimate of the bioaccessible PAH fraction since their variability among
individuals and environmental conditions was lower than for BSAFs. The study also reflected
on the necessity to include black carbon as a major influencing factor of sediment exposure to

persistent organic contaminants for Arctic benthos.

In Chapter 3, the relative importance of feeding traits and sediment composition for the
bioaccumulation of PAHs by the aforementioned species was evaluated using a dynamic
modelling approach. Modelling input data were obtained from a laboratory exposure
experiment performed with specimens collected at Blomstrandhalveya. The experiment
followed the design of an earlier exposure experiment developed for temperate counterpart
species for comparison purposes. The latter included the surface deposit and suspension
feeding bivalve (Limecola balthica) and the deposit feeding polychaete (Alitta virens)
frequently used as test species in bioaccumulation studies. In both experiments, species were
exposed to sediment treatments made from the combination of different ratios of a reference
and a naturally contaminated sediment collected in a temperate estuary. In this laboratory
study, PAH body residues were again selected as the most suitable exposure metric due to

considerable BSAF variability in both the control and exposed groups.

In the Arctic experiment, differences in the bioavailability of PAHs between sediment
treatments for each taxonomy group possibly explained significantly higher lipid-normalised
concentrations observed for 3- and 4-ring PAHS in A. borealis compared to N. ciliata.
However, PAH uptake was limited among bivalve species which was likely caused by the

presence of pyrogenic PAH sources in the contaminated sediment, commonly associated with
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black carbon emissions from shipping, and low nutritional value of the bivalves reference
sediment. The experimental approach used did not reduce the uncertainty in the relative
contribution of different PAH sources to body residues observed in Chapter 2. It was
concluded that future studies should look at the influence of the quality and quantity of
organic matter in different sediment PAH sources to help to interpret chemical exposure in

Arctic species.

A comparison with the temperate experiment did not yield any significant differences in PAH
body residues nor measured BSAFs between the Arctic and temperate counterpart species.
Similar exposure routes and the considerable biological variability in the control groups could
explain the similarity in the model output between experiments, also reflected by the absence
of differences in the model parameters between test species or experiments. Because of
limitations on the availability of Arctic species and the variability observed during exposure,
the modelling approach did not provide any insightful information on the bioaccumulation
mechanisms. Nevertheless, it is expected that such constraints may be overcome after further
characterization of PAH uptake and elimination routes in Arctic species under local

conditions.

In Chapter 4, a suite of biomarkers of PAH exposure (acyl-CoA oxidase, AOX; glutathione
S-transferase, GST; pyrene metabolites) and neurotoxicity (acetylcholinesterase, AChE) were
analysed in the aforementioned species in order to evaluate the species-specific sensitivity of
Arctic species to PAHs in comparison to their temperate counterparts and the general
applicability of standard biomarker protocols for predicting sub-lethal ecological effects in
Arctic species. Due to limited sample availability and general lack of knowledge of PAH
biotransformation pathways among marine invertebrates, enzymatic biomarkers (i.e., AOX,
AChE, GST) were analysed in 4. borealis samples collected from experiments included in
Chapter 3, whereas pyrene metabolites were analysed in samples from Arctic (M. calcarea,

N. ciliata) and temperate species (L. balthica, A. virens).

The results of the study showed neither induction or correlation between the activity of AOX
or GST in A. borealis and PAH contamination levels in sediment treatments, nor evidence of
PAH neurotoxicity according to AChE activity. Lack of enzymatic induction may be related
to either too low PAH concentrations in sediment or to the influence of confounding factors
such as low food availability or changing metabolic status of 4.borealis during sampling.

Pyrene biotransformation rates were limited among Arctic and temperate species as the ratio
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of pyrene-1-glucuronide (Phase II metabolite) to pyrene content did not correlate with pyrene
exposure in test organisms. It was concluded that PAH metabolites may be used to estimate
PAH exposure as a flux balance between PAH parental and metabolite compounds, although

Phase II biotransformation pathways need further characterization in test species.

In Chapter 5, the avoidance response to sediment contaminated with Distillate Marine grade
A (DMA) oil of a freshwater (Gammarus pulex) and marine (Gammarus locusta) model
benthic species was evaluated in a 96-h test period and used as the basis for future pilot
testing in Arctic species. G. pulex avoided contaminated sediment at the highest concentration
(1000 mg DMA/kg dry wt.), while G. locusta avoidance was either not consistent with
exposure time or below effect threshold. Lack of consistency in G. locusta avoidance was
possibly caused by differences in the energy allocation to growth and reproduction between
G. locusta life-span stages, affecting their ability to escape from DMA. In contrast, a lower
reproductive effort in G. pulex winter individuals may have increased their energy storage
capacity and thus, energy allocation to avoidance. In addition, differences in DMA behaviour
between freshwater and marine tests and PAH partitioning between marine tests likely

affected the comparability between tests.

The results of this study highlighted the need for baseline assessments of inter-individual
variability in the avoidance response of benthic amphipods as well as the chemical
characterization of sediment treatments and overlying water in exposure systems. It was
concluded that the combined analysis of energy consumption and spatial avoidance could help
to elucidate whether the avoidance ability of amphipods may be affected by their reproductive
strategy and how could avoidance be translated into a recognizable pattern of effects on life-
history traits of Gammarus spp. Future studies should consider as well the influence of

reproductive and moulting stage on the sensitivity to oil of benthic amphipods.

The final Chapter (6) summarizes and discusses the outcomes of Chapters 2 to 5 in order to
select the most appropriate approach to risk identification of O&G and shipping activities in
Arctic benthos and to identify research priorities for the validation of candidate methods.
Recommendations for the selection and validation of bioindicators and biomarkers of long-
term oil spill and O&G environmental effects in Arctic coastal benthic systems included (1)
the implementation of more standardized methods for sediment preparation, exposure
conditions and acclimatization of field organisms, (2) the collection of baseline data on PAH

body residues and biomarker responses in Arctic bioindicator species, (3) the characterization
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Summary

of quality and quantity of organic matter in all different diet components of exposure
treatments, (4) the evaluation of the relative effect of environmental and biological factors on
the activity of biomarkers, (5) the design of community assessments to explore the
relationship between PAH body residues, sediment characteristics and environmental factors
and (6) the inclusion of oil avoidance tests using Arctic benthic amphipods as a candidate tool
for oil spill risk assessment for the Arctic. This work contributes to the development of Arctic
benthic bioindicators of the cumulative effects of O&G and shipping activities through the
identification of robust PAH exposure metrics in representative benthic species of the Barents

Sea region.
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