6 research outputs found

    Modern rhodolith-dominated carbonates at Punta Chivato, Mexico

    Get PDF
    Rhodolith-dominated carbonate environments, characterized by high abundances of free-living coralline algae, have been described globally from a wide range of Recent and fossil shallow marine settings. In the present-day warm-temperate Gulf of California, Mexico, rhodolith-dominated systems are important contributors to carbonate production. One of the most prolific rhodolith factories is located on the Punta Chivato shelf, in the central Gulf of California, where due to a lack of input of terrigenous material from the arid hinterland, carbonate content averages 79%. Punta Chivato rhodoliths thrive above the shallow euphotic zone under normal saline, warm-temperate and meso- to eutrophic conditions. A detailed sedimentologic study combined with acoustic seafloor mapping indicates the presence of extensive rhodolith-dominated facies at subtidal water depth covering an area of \u3e17 km2. Additional facies, surrounding the rhodolith-dominated facies include a fine-grained molluscan, a transitional bivalve-rhodolith and a bivalve facies. While the Punta Chivato shelf yields average abundances of 38% rhodolith-derived coralline algal components in the gravel-sized sediment fraction, the rhodolith facies itself is characterized by more than 60% coralline algal components. Other important carbonate producers at Punta Chivato include bivalves (35%), bryozoa (11%) and gastropods (8%). The present study shows that acoustic sediment mapping yields highly resolved continuous coverage of the seafloor and can distinguish modern rhodolith facies from surrounding sediment. This has important implications for quantifying rhodolith-dominated settings globally, as well as for ecological and conservation studies. © Publications Scientifiques du Muséum national d\u27Histoire naturelle, Paris

    Drilling Predation on Serpulid Polychaetes (Ditrupa arietina) from the Pliocene of the Cope Basin, Murcia Region, Southeastern Spain

    Get PDF
    We report quantitative analyses of drilling predation on the free-living, tube-dwelling serpulid polychaete Ditrupa arietina from the Cope Cabo marine succession (Pliocene, Spain). Tubes of D. arietina are abundant in the sampled units: 9 bulk samples from 5 horizons yielded ∼5925 specimens of D. arietina. Except for fragmentation, tubes were well preserved. Complete specimens ranged from 3.1 to 13.4 mm in length and displayed allometric growth patterns, with larger specimens being relatively slimmer. Drilled Ditrupa tubes were observed in all samples. Drillholes, identified as Oichnus paraboloides, were characterized by circular to elliptical outline (drillhole eccentricity increased with its diameter), parabolic vertical profile, outer diameter larger than inner diameter, penetration of one tube wall only, narrow range of drill-hole sizes, and non-random (anterior) distribution of drillholes. A total of 233 drilled specimens were identified, with drilling frequencies varying across horizons from 2.7% to 21% (3.9% for pooled data). Many tube fragments were broken across a drillhole suggesting that the reported frequencies are conservative and that biologically-facilitated (drill-hole induced) fragmentation hampers fossil preservation of complete serpulid tubes. No failed or repaired holes were observed. Multiple complete drillholes were present (3.9%). Drilled specimens were significantly smaller than undrilled specimens and tube length and drill-hole diameter were weakly correlated. The results suggest that drillholes were produced by a size-selective, site-stereotypic predatory organism of unknown affinity. The qualitative and quantitative patterns reported here are mostly consistent with previous reports on recent and fossil Ditrupa and reveal parallels with drilling patterns documented for scaphopod mollusks, a group that is ecologically and morphologically similar to Ditrupa. Consistent with previous studies, the results suggest that free-dwelling serpulid polychaetes are preyed upon by drilling predators and may provide a viable source of data on biotic interactions in the fossil record

    Large-Scale Spatial Distribution Patterns of Echinoderms in Nearshore Rocky Habitats

    Get PDF
    This study examined echinoderm assemblages from nearshore rocky habitats for large-scale distribution patterns with specific emphasis on identifying latitudinal trends and large regional hotspots. Echinoderms were sampled from 76 globally-distributed sites within 12 ecoregions, following the standardized sampling protocol of the Census of Marine Life NaGISA project (www.nagisa.coml.org). Sample-based species richness was overall low (<1–5 species per site), with a total of 32 asteroid, 18 echinoid, 21 ophiuroid, and 15 holothuroid species. Abundance and species richness in intertidal assemblages sampled with visual methods (organisms >2 cm in 1 m(2) quadrats) was highest in the Caribbean ecoregions and echinoids dominated these assemblages with an average of 5 ind m(−2). In contrast, intertidal echinoderm assemblages collected from clearings of 0.0625 m(2) quadrats had the highest abundance and richness in the Northeast Pacific ecoregions where asteroids and holothurians dominated with an average of 14 ind 0.0625 m(−2). Distinct latitudinal trends existed for abundance and richness in intertidal assemblages with declines from peaks at high northern latitudes. No latitudinal trends were found for subtidal echinoderm assemblages with either sampling technique. Latitudinal gradients appear to be superseded by regional diversity hotspots. In these hotspots echinoderm assemblages may be driven by local and regional processes, such as overall productivity and evolutionary history. We also tested a set of 14 environmental variables (six natural and eight anthropogenic) as potential drivers of echinoderm assemblages by ecoregions. The natural variables of salinity, sea-surface temperature, chlorophyll a, and primary productivity were strongly correlated with echinoderm assemblages; the anthropogenic variables of inorganic pollution and nutrient contamination also contributed to correlations. Our results indicate that nearshore echinoderm assemblages appear to be shaped by a network of environmental and ecological processes, and by the differing responses of various echinoderm taxa, making generalizations about the patterns of nearshore rocky habitat echinoderm assemblages difficult
    corecore