5 research outputs found

    3D Nanofabrication inside rapid prototyped microfluidic channels showcased by wet-spinning of single micrometre fibres

    Full text link
    Microfluidics is an established multidisciplinary research domain with widespread applications in the fields of medicine, biotechnology and engineering. Conventional production methods of microfluidic chips have been limited to planar structures, preventing the exploitation of truly three-dimensional architectures for applications such as multi-phase droplet preparation or wet-phase fibre spinning. Here the challenge of nanofabrication inside a microfluidic chip is tackled for the showcase of a spider-inspired spinneret. Multiphoton lithography, an additive manufacturing method, was used to produce free-form microfluidic masters, subsequently replicated by soft lithography. Into the resulting microfluidic device, a threedimensional spider-inspired spinneret was directly fabricated in-chip via multiphoton lithography. Applying this unprecedented fabrication strategy, the to date smallest printed spinneret nozzle is produced. This spinneret resides tightly sealed, connecting it to the macroscopic world. Its functionality is demonstrated by wet-spinning of single-digit micron fibres through a polyacrylonitrile coagulation process induced by a water sheath layer. The methodology developed here demonstrates fabrication strategies to interface complex architectures into classical microfluidic platforms. Using multiphoton lithography for in-chip fabrication adopts a high spatial resolution technology for improving geometry and thus flow control inside microfluidic chips. The showcased fabrication methodology is generic and will be applicable to multiple challenges in fluid control and beyond

    Microfluidic cell sorting: Towards improved biocompatibility of extracorporeal lung assist devices

    Get PDF
    Extracorporeal lung assist technology is one of the last options in critical care medicine to treat patients suffering from severe oxygenation and decarboxylation disorders. Platelet activation along with the consequent thrombus formation is a potentially life-threatening complication of this technique. To avoid platelet-dependent clot formation, this study aims at developing a microfluidic cell sorting chip that can bypass platelets prior to the membrane oxygenator of the extracorporeal lung assist device. The cell sorting chips were produced by maskless dip-in laser lithography, followed by soft lithography replication using PDMS. Citrated porcine whole blood with a clinically relevant haematocrit of 17% was used for the cell sorting experiments involving three different blood flow rates. The joint effects of flow focusing and hydrodynamic lifting forces within the cell sorting chip resulted in a reduction of up to 57% of the baseline platelet count. This cell sorting strategy is suitable for the continuous and label-free separation of red blood cells and platelets and is potentially applicable for increasing the biocompatibility and lifetime of current extracorporeal lung assist devices

    Sex-specific analysis in Behçets disease reveals higher genetic risk in male patients

    Get PDF
    Objectives: Behcet's disease tends to be more severe in men than women. This study was undertaken to investigate sex-specific genetic effects in Behcet's disease. Methods: A total of 1762 male and 1216 female patients with Behcet's disease from six diverse populations were studied, with the majority of patients of Turkish origin. Genotyping was performed using an Infinium ImmunoArray-24 BeadChip, or extracted from available genotyping data. Following imputation and extensive quality control measures, genome-wide association analysis was performed comparing male to female patients in the Turkish cohort, followed by a meta-analysis of significant results in all six populations. In addition, a weighted genetic risk score for Behcet's disease was calculated and compared between male and female patients. Results: Genetic association analysis comparing male to female patients with Behcet's disease from Turkey revealed an association with male sex in HLA-B/MICA within the HLA region with a GWAS level of significance (rs2848712, OR = 1.46, P = 1.22 x 10-8). Meta-analysis of the effect in rs2848712 across six populations confirmed these results. Genetic risk score for Behcet's disease was significantly higher in male compared to female patients from Turkey. Higher genetic risk for Behcet's disease was observed in male patients in HLA-B/ MICA (rs116799036, OR = 1.45, P = 1.95 x 10-8), HLA-C (rs12525170, OR = 1.46, P = 5.66 x 10-7), and KLRC4 (rs2617170, OR = 1.20, P = 0.019). In contrast, IFNGR1 (rs4896243, OR = 0.86, P = 0.011) was shown to confer higher genetic risk in female patients. Conclusions: Male patients with Behcet's disease are characterized by higher genetic risk compared to female patients. This genetic difference, primarily derived from our Turkish cohort, is largely explained by risk within the HLA region. These data suggest that genetic factors might contribute to differences in disease presentation between men and women with Behcet's disease.N
    corecore