30 research outputs found

    Role of Fibrin Structure in Thrombosis and Vascular Disease

    No full text
    Fibrin clot formation is a key event in the development of thrombotic disease and is the final step in a multifactor coagulation cascade. Fibrinogen is a large glycoprotein that forms the basis of a fibrin clot. Each fibrinogen molecule is comprised of two sets of Aα, Bβ, and γ polypeptide chains that form a protein containing two distal D regions connected to a central E region by a coiled-coil segment. Fibrin is produced upon cleavage of the fibrinopeptides by thrombin, which can then form double-stranded half staggered oligomers that lengthen into protofibrils. The protofibrils then aggregate and branch, yielding a three-dimensional clot network. Factor XIII, a transglutaminase, cross-links the fibrin stabilizing the clot protecting it from mechanical stress and proteolytic attack. The mechanical properties of the fibrin clot are essential for its function as it must prevent bleeding but still allow the penetration of cells. This viscoelastic property is generated at the level of each individual fiber up to the complete clot. Fibrinolysis is the mechanism of clot removal, and involves a cascade of interacting zymogens and enzymes that act in concert with clot formation to maintain blood flow. Clots vary significantly in structure between individuals due to both genetic and environmental factors and this has an effect on clot stability and susceptibility to lysis. There is increasing evidence that clot structure is a determinant for the development of disease and this review will discuss the determinants for clot structure and the association with thrombosis and vascular disease

    Oscillatory activity within rat substantia gelatinosa in vitro: a role for chemical and electrical neurotransmission

    No full text
    Although rhythmic behaviour of mammalian spinal ventral horn networks has been extensively studied little is known about oscillogenesis in the spinal dorsal horn. The aims of this in vitro study were to record and determine the underlying mechanisms of potassium-evoked network field oscillations in the substantia gelatinosa of the neonatal rat dorsal horn, a lamina involved in nociceptive processing. Transient pressure ejection of a potassium solution evoked reproducible rhythmic activity in discrete areas of the substantia gelatinosa which lasted for 5–15 s with a single prominent peak in the 4–12 Hz frequency band (7.7 ± 0.1 Hz, n = 60). Oscillations of similar frequency and amplitude were also observed in isolated dorsal horn quadrants. Application of CNQX (10 μm) reduced peak power amplitude and integrated power area (from 4 to 12 Hz) of the power spectrum, whereas d-AP5 (50 μm) had no effect on the potassium-evoked rhythm. Bicuculline (30 μm) or strychnine (10 μm) reduced the power amplitude and area. On combination of bicuculline (30 μm) and strychnine (10 μm) the reductions in power amplitude and area were not significantly different (P > 0.05) when compared with application of either drug alone. The gap junction blockers carbenoxolone (100 μm) or octanol (1 mm) significantly reduced power amplitude and area. Although TTX (1 μm) or a calcium-free perfusate both caused reductions in the power amplitude and area, potassium-evoked rhythmic activity persisted. However, this persistent rhythm was further reduced on combination of calcium-free perfusate with octanol (1 mm) and was abolished using a cocktail of drugs. Blockade of the potassium delayed rectifier current by tetraethylammonium (5 mm) or the hyperpolarization-activated current (I(h)) by ZD7288 (10 μm) disrupted the synchronization of the potassium-induced oscillation. The frequency of potassium-induced rhythms was unaffected by any of the drugs tested. These novel findings demonstrate that transient pressure ejection of potassium evokes oscillatory activity in the substantia gelatinosa in vitro. This rhythm is partly dependent upon various receptors (AMPA/kainate, GABA(A) and glycine), ion channels (potassium delayed rectifier and I(h)) and gap junctions. Oscillatory behaviour in the substantia gelatinosa could potentially play a role in the processing of nociceptive signals
    corecore