12 research outputs found

    Constraints on the Abundance of Highly Ionized Proto-Cluster Regions from the Absence of Large Voids in the Lyman Alpha Forest

    Full text link
    Energetic feedback processes during the formation of galaxy clusters may have heated and ionized a large fraction of the intergalactic gas in proto-cluster regions. When such a highly ionized hot ``super-bubble'' falls along the sightline to a background quasar, it would be seen as a large void, with little or no absorption, in the Lyman alpha forest. We examine the spectra of 137 quasars in the Sloan Digital Sky Survey, to search for such voids, and find no clear evidence of their existence. The size distribution of voids in the range 5-70 Angstrom (corresponding to physical sizes of approximately 3-35 comoving Mpc/h) is consistent with the standard model for the Lyman alpha forest without additional hot bubbles. We adapt a physical model for HII bubble growth during cosmological reionization (Furlanetto, Zaldarriaga and Hernquist 2004), to describe the expected size-distribution of hot super-bubbles at redshift around z = 3. This model incorporates the conjoining of bubbles around individual neighboring galaxies. Using the non-detection of voids, we find that models in which the volume filling factor of hot bubbles exceeds approximately 20 percent at z=3 can be ruled out, primarily because they overproduce the number of large (40-50 Angstrom) voids. We conclude that any pre-heating mechanism that explains galaxy cluster observations must avoid heating the low-density gas in the proto-cluster regions, either by operating relatively recently (z<3) or by depositing entropy in the high-density regions.Comment: submitted to ApJ, 9 emulateapj pages with 3 figure

    Cosmology with Standard Sirens: the Importance of the Shape of the Lensing Magnification Distribution

    Full text link
    The gravitational waves (GWs) emitted by inspiraling binary black holes, expected to be detected by the Laser Interferometer Space Antenna (LISA), could be used to determine the luminosity distance to these sources with the unprecedented precision of <~ 1%. We study cosmological parameter constraints from such standard sirens, in the presence of gravitational lensing by large-scale structure. Lensing introduces magnification with a probability distribution function (PDF) whose shape is highly skewed and depends on cosmological parameters. We use Monte-Carlo simulations to generate mock samples of standard sirens, including a small intrinsic scatter, as well as the additional, larger scatter from lensing, in their inferred distances. We derive constraints on cosmological parameters, by simultaneously fitting the mean and the distribution of the residuals on the distance vs redshift (d_L - z) Hubble diagram. We find that for standard sirens at redshift z ~ 1, the sensitivity to a single cosmological parameter, such as the matter density Omega_m, or the dark energy equation of state w, is ~ 50%-80% tighter when the skewed lensing PDF is used, compared to the sensitivity derived from a Gaussian PDF with the same variance. When these two parameters are constrained simultaneously, the skewness yields a further enhanced improvement (by ~ 120%), owing to the correlation between the parameters. The sensitivity to the amplitude of the matter power spectrum, sigma_8 from the cosmological dependence of the PDF alone, however, is ~ 20% worse than that from the Gaussian PDF. At higher redshifts, the PDF resembles a Gaussian more closely, and the effects of the skewness become less prominent. These results highlight the importance of obtaining an accurate and reliable PDF of the lensing convergence, in order to realize the full potential of standard sirens as cosmological probes.Comment: 16 pages, 9 tables, 12 figures, submitted to MNRA

    Constraining Intra-cluster Gas Models with AMiBA13

    Get PDF
    Clusters of galaxies have been used extensively to determine cosmological parameters. A major difficulty in making best use of Sunyaev-Zel'dovich (SZ) and X-ray observations of clusters for cosmology is that using X-ray observations it is difficult to measure the temperature distribution and therefore determine the density distribution in individual clusters of galaxies out to the virial radius. Observations with the new generation of SZ instruments are a promising alternative approach. We use clusters of galaxies drawn from high-resolution adaptive mesh refinement (AMR) cosmological simulations to study how well we should be able to constrain the large-scale distribution of the intra-cluster gas (ICG) in individual massive relaxed clusters using AMiBA in its configuration with 13 1.2-m diameter dishes (AMiBA13) along with X-ray observations. We show that non-isothermal beta models provide a good description of the ICG in our simulated relaxed clusters. We use simulated X-ray observations to estimate the quality of constraints on the distribution of gas density, and simulated SZ visibilities (AMiBA13 observations) for constraints on the large-scale temperature distribution of the ICG. We find that AMiBA13 visibilities should constrain the scale radius of the temperature distribution to about 50% accuracy. We conclude that the upgraded AMiBA, AMiBA13, should be a powerful instrument to constrain the large-scale distribution of the ICG.Comment: Accepted for publication in The Astrophysical Journal, 12 pages, 9 figure

    Improved Models for Cosmic Infrared Background Anisotropies: New Constraints on the IR Galaxy Population

    Full text link
    The power spectrum of cosmic infrared background (CIB) anisotropies is sensitive to the connection between star formation and dark matter halos over the entire cosmic star formation history. Here we develop a model that associates star-forming galaxies with dark matter halos and their subhalos. The model is based on a parameterized relation between the dust-processed infrared luminosity and (sub)halo mass. By adjusting 3 free parameters, we attempt to simultaneously fit the 4 frequency bands of the Planck measurement of the CIB anisotropy power spectrum. To fit the data, we find that the star-formation efficiency must peak on a halo mass scale of ~ 5x10^12 solar mass and the infrared luminosity per unit mass must increase rapidly with redshift. By comparing our predictions with a well-calibrated phenomenological model for shot noise, and with a direct observation of source counts, we show that the mean duty cycle of the underlying infrared sources must be near unity, indicating that the CIB is dominated by long-lived quiescent star formation, rather than intermittent short "star bursts". Despite the improved flexibility of our model, the best simultaneous fit to all four Planck channels remains relatively poor. We discuss possible further extensions to alleviate the remaining tension with the data. Our model presents a theoretical framework for a future joint analysis of both background anisotropy and source count measurements.Comment: 14 pages, 2 tables, 7 figures, submitted to MNRA
    corecore