250 research outputs found

    Least Dependent Component Analysis Based on Mutual Information

    Get PDF
    We propose to use precise estimators of mutual information (MI) to find least dependent components in a linearly mixed signal. On the one hand this seems to lead to better blind source separation than with any other presently available algorithm. On the other hand it has the advantage, compared to other implementations of `independent' component analysis (ICA) some of which are based on crude approximations for MI, that the numerical values of the MI can be used for: (i) estimating residual dependencies between the output components; (ii) estimating the reliability of the output, by comparing the pairwise MIs with those of re-mixed components; (iii) clustering the output according to the residual interdependencies. For the MI estimator we use a recently proposed k-nearest neighbor based algorithm. For time sequences we combine this with delay embedding, in order to take into account non-trivial time correlations. After several tests with artificial data, we apply the resulting MILCA (Mutual Information based Least dependent Component Analysis) algorithm to a real-world dataset, the ECG of a pregnant woman. The software implementation of the MILCA algorithm is freely available at http://www.fz-juelich.de/nic/cs/softwareComment: 18 pages, 20 figures, Phys. Rev. E (in press

    Square root singularity in the viscosity of neutral colloidal suspensions at large frequencies

    Full text link
    The asymptotic frequency ω\omega, dependence of the dynamic viscosity of neutral hard sphere colloidal suspensions is shown to be of the form η0A(ϕ)(ωτP)1/2\eta_0 A(\phi) (\omega \tau_P)^{-1/2}, where A(ϕ)A(\phi) has been determined as a function of the volume fraction ϕ\phi, for all concentrations in the fluid range, η0\eta_0 is the solvent viscosity and τP\tau_P the P\'{e}clet time. For a soft potential it is shown that, to leading order steepness, the asymptotic behavior is the same as that for the hard sphere potential and a condition for the cross-over behavior to 1/ωτP1/\omega \tau_P is given. Our result for the hard sphere potential generalizes a result of Cichocki and Felderhof obtained at low concentrations and agrees well with the experiments of van der Werff et al, if the usual Stokes-Einstein diffusion coefficient D0D_0 in the Smoluchowski operator is consistently replaced by the short-time self diffusion coefficient Ds(ϕ)D_s(\phi) for non-dilute colloidal suspensions.Comment: 18 pages LaTeX, 1 postscript figur

    Sedimentation and Flow Through Porous Media: Simulating Dynamically Coupled Discrete and Continuum Phases

    Full text link
    We describe a method to address efficiently problems of two-phase flow in the regime of low particle Reynolds number and negligible Brownian motion. One of the phases is an incompressible continuous fluid and the other a discrete particulate phase which we simulate by following the motion of single particles. Interactions between the phases are taken into account using locally defined drag forces. We apply our method to the problem of flow through random media at high porosity where we find good agreement to theoretical expectations for the functional dependence of the pressure drop on the solid volume fraction. We undertake further validations on systems undergoing gravity induced sedimentation.Comment: 22 pages REVTEX, figures separately in uudecoded, compressed postscript format - alternatively e-mail '[email protected]' for hardcopies

    International Federation of Clinical Neurophysiology (IFCN) – EEG research workgroup: Recommendations on frequency and topographic analysis of resting state EEG rhythms. Part 1: Applications in clinical research studies

    Get PDF
    In 1999, the International Federation of Clinical Neurophysiology (IFCN) published “IFCN Guidelines for topographic and frequency analysis of EEGs and EPs” (Nuwer et al., 1999). Here a Workgroup of IFCN experts presents unanimous recommendations on the following procedures relevant for the topographic and frequency analysis of resting state EEGs (rsEEGs) in clinical research defined as neurophysiological experimental studies carried out in neurological and psychiatric patients: (1) recording of rsEEGs (environmental conditions and instructions to participants; montage of the EEG electrodes; recording settings); (2) digital storage of rsEEG and control data; (3) computerized visualization of rsEEGs and control data (identification of artifacts and neuropathological rsEEG waveforms); (4) extraction of “synchronization” features based on frequency analysis (band-pass filtering and computation of rsEEG amplitude/power density spectrum); (5) extraction of “connectivity” features based on frequency analysis (linear and nonlinear measures); (6) extraction of “topographic” features (topographic mapping; cortical source mapping; estimation of scalp current density and dura surface potential; cortical connectivity mapping), and (7) statistical analysis and neurophysiological interpretation of those rsEEG features. As core outcomes, the IFCN Workgroup endorsed the use of the most promising “synchronization” and “connectivity” features for clinical research, carefully considering the limitations discussed in this paper. The Workgroup also encourages more experimental (i.e. simulation studies) and clinical research within international initiatives (i.e., shared software platforms and databases) facing the open controversies about electrode montages and linear vs. nonlinear and electrode vs. source levels of those analyses

    EEG windowed statistical wavelet scoring for evaluation and discrimination of muscular artifacts

    Get PDF
    EEG recordings are usually corrupted by spurious extra-cerebral artifacts, which should be rejected or cleaned up by the practitioner. Since manual screening of human EEGs is inherently error prone and might induce experimental bias, automatic artifact detection is an issue of importance. Automatic artifact detection is the best guarantee for objective and clean results. We present a new approach, based on the time–frequency shape of muscular artifacts, to achieve reliable and automatic scoring. The impact of muscular activity on the signal can be evaluated using this methodology by placing emphasis on the analysis of EEG activity. The method is used to discriminate evoked potentials from several types of recorded muscular artifacts—with a sensitivity of 98.8% and a specificity of 92.2%. Automatic cleaning ofEEGdata are then successfully realized using this method, combined with independent component analysis. The outcome of the automatic cleaning is then compared with the Slepian multitaper spectrum based technique introduced by Delorme et al (2007 Neuroimage 34 1443–9)

    Threshold Electrodisintegration of ^3He

    Get PDF
    Cross sections were measured for the near-threshold electrodisintegration of ^3He at momentum transfer values of q=2.4, 4.4, and 4.7 fm^{-1}. From these and prior measurements the transverse and longitudinal response functions R_T and R_L were deduced. Comparisons are made against previously published and new non-relativistic A=3 calculations using the best available NN potentials. In general, for q<2 fm^{-1} these calculations accurately predict the threshold electrodisintegration of ^3He. Agreement at increasing q demands consideration of two-body terms, but discrepancies still appear at the highest momentum transfers probed, perhaps due to the neglect of relativistic dynamics, or to the underestimation of high-momentum wave-function components.Comment: 9 pages, 7 figures, 1 table, REVTEX4, submitted to Physical Review

    Lattice Boltzmann simulations of soft matter systems

    Full text link
    This article concerns numerical simulations of the dynamics of particles immersed in a continuum solvent. As prototypical systems, we consider colloidal dispersions of spherical particles and solutions of uncharged polymers. After a brief explanation of the concept of hydrodynamic interactions, we give a general overview over the various simulation methods that have been developed to cope with the resulting computational problems. We then focus on the approach we have developed, which couples a system of particles to a lattice Boltzmann model representing the solvent degrees of freedom. The standard D3Q19 lattice Boltzmann model is derived and explained in depth, followed by a detailed discussion of complementary methods for the coupling of solvent and solute. Colloidal dispersions are best described in terms of extended particles with appropriate boundary conditions at the surfaces, while particles with internal degrees of freedom are easier to simulate as an arrangement of mass points with frictional coupling to the solvent. In both cases, particular care has been taken to simulate thermal fluctuations in a consistent way. The usefulness of this methodology is illustrated by studies from our own research, where the dynamics of colloidal and polymeric systems has been investigated in both equilibrium and nonequilibrium situations.Comment: Review article, submitted to Advances in Polymer Science. 16 figures, 76 page

    Characterization of a weakly expressed KIR2DL1 variant reveals a novel upstream promoter that controls KIR expression

    Get PDF
    Members of the human KIR (killer cell immunoglobulin-like receptor) class I major histocompatibility complex receptor gene family contain multiple promoters that determine the variegated expression of KIR on natural killer cells. In order to identify novel genetic alterations associated with decreased KIR expression, a group of donors was characterized for KIR gene content, transcripts and protein expression. An individual with a single copy of the KIR2DL1 gene but a very low level of gene expression was identified. The low expression phenotype was associated with a single-nucleotide polymorphism (SNP) that created a binding site for the inhibitory ZEB1 (Zinc finger E-box-binding homeobox 1) transcription factor adjacent to a c-Myc binding site previously implicated in distal promoter activity. Individuals possessing this SNP had a substantial decrease in distal KIR2DL1 transcripts initiating from a novel intermediate promoter located 230 bp upstream of the proximal promoter start site. Surprisingly, there was no decrease in transcription from the KIR2DL1 proximal promoter. Reduced intermediate promoter activity revealed the existence of alternatively spliced KIR2DL1 transcripts containing premature termination codons that initiated from the proximal KIR2DL1 promoter. Altogether, these results indicate that distal transcripts are necessary for KIR2DL1 protein expression and are required for proper processing of sense transcripts from the bidirectional proximal promoter
    corecore