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We propose to use precise estimators of mutual informain to find the least dependent components in
a linearly mixed signal. On the one hand, this seems to lead to better blind source separation than with any
other presently available algorithm. On the other hand, it has the advantage, compared to other implementa-
tions of “independent” component analy$i€A), some of which are based on crude approximations for M,
that the numerical values of the M| can be used (fprestimating residual dependencies between the output
components(ii) estimating the reliability of the output by comparing the pairwise Mls with those of remixed
components; andii) clustering the output according to the residual interdependencies. For the Ml estimator,
we use a recently proposddnearest-neighbor-based algorithm. For time sequences, we combine this with
delay embedding, in order to take into account nontrivial time correlations. After several tests with artificial
data, we apply the resulting MILCAnutual-information-based least dependent component anedygaithm
to a real-world dataset, the ECG of a pregnant woman.
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[. INTRODUCTION testing: A blind source separation into independent compo-
nents will be more robust the deeper the minima of the de-
“Independent” component analysiiCA) is a statistical pendences are. i8-8, such reliability tests have been pro-
method for transforming an observed multicomponent dat@#0sed based on resampling and noise injection. We believe
setx(t) = (X,(t), % (1), ... X,(t)) into components that are sta- that looking at_the dependence landscape is more direct and
tistically as independent from each other as posdibjeln ~ conceptually simpler. _
theoretical analyses, one usually assumes a certain model for N the present paper, we propose to use a recently intro-

the data for which a decomposition into completely independuced MI estimator based okrnearest-neighbor statistics

; : : : ot 9]. It resembles the Vasicek estimatdiO] for differential
dent components is possible, but in real life applications the . : .
latter will in general not be true. Depending on the assumed r;]tircohpltiass \glglc():hbgzsegegrﬁ-%gglrlggt-rﬁgfI%tgotrosl[g%sltiacsn%ut
structure of the data, one typically makes a parametrize 9 :

bout how th be d barl h hile the Vasicek estimator exists only for one-dimensional
guess about how they can be decompogeearly or not, distributions and cannot therefore be used to estimate depen-

using only equ.al times or using also dellayeq .SuDerpOSiti,on,%encies via MI, our estimator is based on the Kozachenko-
etc) and then fixes the parameters by minimizing some simiy gonenko[13] estimator for differential entropies and works
larity measure between the output components. in any dimension. In addition, it seems to give the most
Using mutual informatioriMI) would be the most natural precise blind source separation algorithm for 2D distribu-
way to solve this problem. But estimating Ml from statistical tions known at present.
samples is not easy. Most existing algorithms are either very Throughout the paper, we will only discuss the simplest
slow or very crude. Also, the more sophisticated estimategase of linear superpositions. While MI can be applied in
usually do not depend smoothly on transformations of theprinciple also to nonlinear mixtures, this would be much
data, which slows down minimum searches. In the ICA lit-more difficult.
erature, mostly very crude approximations of Ml are used, or The paper is organized as follows. In Sec. II, we recall
Ml is completely disregarded in favor of different ap- basic properties of Ml and present the MI estimato] @
proached1,2]. In particular, we are aware of only very few The basic version of MILCA is described in Sec. Ill, where
attempts to pay attention to the actual values of thewe also give first applications to toy models, and where we
similarities(in)dependences obtained by ICA. Of course, itwill also discuss the reliability of the decompositions. In Sec.
has been recognized several times that even the best decotW; we deal with the case where only some groups of output
position with a given class of algorithme.g., linear and components are independent, with nonzero interdependen-
instantaneoysmay not lead to strictly independent compo- cies within the groups. In this case it is natural to cluster the
nents, but then typically it is proposed to use a decomposieomponents. We propose to use again Ml for that purpose, in
tion algorithm within this class which is different from that the form of themutual information based clustering/1C)
for truly independent sourcef3,4]. An exception is the algorithm presented recently i{i4]. In Sec. V, we discuss
“multidimensional ICA” of [5], where the author points out how MILCA (and other ICA algorithmscan be combined
that one can use standard decomposition algorithms even imith time delay embedding, in order to take into account
the case of nonzero dependencies, but also there most of thentrivial time structure€in case the data to be decomposed
attention is focused on whether components are independeritbrm a time series A thorough discussion of our method and
but not on how dependent they are. The latter can be usefuf its relations to previous work is given in Sec. VI. Conclu-
for clustering the output, but also for reliability and stability sions are drawn in the last section, Sec. VII.
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Il. MUTUAL INFORMATION is isotropig, and to restrict the actual minimization of the
contrast function to pure rotatior$]. If one is sure that the
sources are really independent, this is justified: For the cor-
Assume thatX and Y are continuous random variables rect sources, both Mls and covariances are zero. But it is not
with joint density u(x,y) and marginal densitiesu,(X) justified if there are no strictly independent sources and we

A. General properties of Ml

=Jdyu(x,y) and uy(y). Then Ml is defined a$l5] want to find theleastdependent sources.
For any numbeM of random variables, the Mlor “re-
1(X,Y) =J' f dxdyu(x,y)log M (1) dundancy,” as it is often calleds defined as
Mx(x)ﬂy(y) M

The base of the logarithm determines the units in which (X, Xg, . Xan) = 2 HX) = HX, Xo, ... Xp). (8)
information is measured. In the following, we will always m=1
use natural logarithms, i.e., mutual information will be mea-
sured in nats.

In terms of thedifferential entropies

Notice that this is the appropriate definition for ICA or
MILCA, since it is this difference which one wants to mini-
mize. In the literature outside the ICA community, usually a
different construct is called M[15], but we shall in the
H(X) = —f dxux(x)log ux(x), (2)  following only use Eq(8).
The M-dimensional M| shares with(X,Y) the invariance
under homeomorphisms for eaey, and the fact that it is
H(Y) = _f dyuy()10g uy(y), 3) bounc_ied by the \_/alue obtained fpr a Gaussian with t_he same
covariance matri{9]. The next important property is the

grouping property{9],

and
1(X,Y,2) =1((X,Y),2) +1(XY). 9
HIXY) = _f J' dxdyu(x.y)log u(x,y) ) Here,I((X,Y),Z2) is the MI between the two variabl&sand
_ ) _ (X,Y), and we have used the fact that a random variable need
it can be written a$(X, Y)=H(X)+H(Y)-H(X,Y). not be a scalar. Indeed, anything we said so far holds also if

The most important property of Ml is that it is always x vy . aremulticomponent random variabldexcept Eq.
non-negative, and is zero if and onlyXfandY are indepen- 7y which has to be suitably modifigdrherefore, if we have
dent. Another important feature of Ml is its invariance underore than three random variables, E8) can be iterated.
homeomorphisms oX andY. If X'=F(X) andY'=G(Y) are  kqr any set of random variables and any hierarchical cluster-
smooth and uniquely invertible maps, then ing of this set into disjoint groups, the total Ml can be hier-

F N — archically decomposed into MIs between groups and Mis
IXLY)=106Y). ® within each group. This will become important in Sec. V,
Notice that this is not the case for differential entropies. Justvhere we discuss clustering based on M.
as Gaussian distributions maximize the differential entropy, Intuitively, one might expect that(X,Y,Z)=0 if 1(X,Y)
giving thereby an upper bound on the entropy in terms of the=1(X,z)=1(Y,Z)=0. Pairwise strict independence would
variance of the distribution, Gaussians minimize . This  then imply global independence. That thisist true is dem-
gives alower bound on Ml in terms of the correlation coef- onstrated in the Appendix with a simple counterexample. It
ficient becomes important for chaotic deterministic systems. If
X.Y) X1, Xp, oo XN is'a uniyariate signal produced by a strange
= 2—21/2 (6) attractor with dimensiod, then anyd-tuple of consecutive;

[(XNYH] values will be weakly dependent, while amytuple with
m>d will be strongly dependent.

The last property to be discussed here is related to homeo-
morphisms involving apair of variables (X,Y), i.e.,
(X",Y")=F(X,Y). Using the grouping property and the in-

_ This might suggest that M' can be decompose_d IO & ariance under homeomorphisms of a single variable, we
“linear” part [the right-hand side of Eq7)] plus a nonlinear obtain[9]

part. While such a decomposition is of course always pos-

sible, it is in general not useful. For example, it would also  1(X',Y",Z, ...)=1(X,Y,Z, ...) +[I(X",Y") = 1(X,Y)].

suggest that the minimum of Ml under linear transformations (10)

(X", Y")=A(X,Y) is always reached wheX’ andY’ are lin-

early uncorrelatedin which caser=0 and the right-hand This is important if we want to minimize the MI with respect

side of Eq.(7) is zerd. But it is easy to give counterex- to linear transformations. Since any such transformation in

amples for which this is not trugsee the Appendix M dimensions can be factorized into pairwise transforma-
This is important for MILCA, since it is standard practice tions, this means that we only have to compute pairwise Mis

in ICA to make first a “prewhitening(principal component for the minimization. To find the actual value of the mini-

transformation plus rescaling, so that the covariance matrixnum, we have of course to perform one calculation inMall

r

[(X,Y) = - % log(1-r?). (7)
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dimensions. We also have to estimate higher-order Mis di- 001 | r=09 -
rectly, if we want to use the method of Sec. V A with em- ;:gig
bedding dimensiom> 2. T OOl N ‘
r1 0 AN Vi~
0N T .
B. MI estimation ; ool N\
Assume that one has a set Nfbivariate measurements, g 001
(%;,vi),1=1, ... N, which are assumed to be ifthdependent
identically dlstrlbut_egi reall_zatlons of t.he rangom vana_bl_e OO o 00t 005
Z=(X,Y). Our task is to estimate MI, with or without explicit 1/N
estimation of the unknown densities(x,y), u.(x), and
My(Y)- FIG. 1. Estimates of average valuesloX,Y)—lgacf(X,Y) for

Two classes of estimators were giver{®. In contrast to Gaussian signals with unit variance and covariameg®9, 0.6, 0.3,

. - d 0.0(from top to botton), plotted against IN. In all casesk
Othe.r es.tlm.ators based on .CumUIant expansions, entmp-a)a. The number of realizations is2x 10 for N< =1000, and
maximalization, parametrizations of the densities, kernel, ~
. . - . decreases te=10° for N=40 000. Error bars are smaller than the
density estimators, or binningfor a review of these meth- _.
. . sizes of the symbols.
ods, seg[9]), the algorithms proposed if9] are based on
entropy estimates fronk-nearest-neighbor distances. This . _ _
implies that they are data-efficienivith k=1 we resolve [the number of points wittlx —xj| < &(i)/2 and [ly;~y;[
structures down to the smallest possible soakesaptiveithe = €(1)/2] be the new number of neighbors in the marginal
resolution is higher where data are more numeroasd SPace. The estimate for Ml is then
have minimal bias. Numerically, they seem to becawract - B
for independent distributions, i.e., the estimators are com- 1XY) = (k) = Lk = (hlny) + h(ny)) + (N). - (13)
pletely unbiasedand therefore vanish except for statistical \we denote by---) averages over both alle[1, ... N] and
fluctuationg if u(x,y)=u(x)uly). This was found for all g regjizations of the random samples.
tested distributions and for all dimensionsxoéndy. It is of
course particularly useful for an application where we just
want to test for independence.
In the following, we shall discuss only one of these two
classes, the one based on rectangular neighborhoods call&d

Here we will show results of(X,Y) for Gaussian distri-
butions(cf. Fig. 1). Let X andY be Gaussian signals with
zero mean and unit variance, and with covarianck this
sel (X,Y) is known exactly,

1@(X,Y) in [9]. 1
lGaustX,Y) = = 2 log(1 ~r%). (14)
C. Formal developments Apart from the fact that indeet(X,Y)—lgaustX,Y) —0 for
We will start from the Kozachenko-Leonenko estimate forN— o, the most conspicuous feature is that the systematic
Shannon entropy9,13,16-18 error is compatible with zero for=0. This is a property

which makes the estimator particularly interesting for ICA
N d . because there we are looking for uncorrelated signals. For
H(X) == (k) + ¢(N) +log cq + Nz log (i),  (11) non-Gaussian signals, our estimator still has a smaller sys-
tematic error than other estimators in the literati8
where i/(x) is the digamma functione(i) is twice the dis- Using the same arguments fam random variables
tance fromx; to its kth neighbord is the dimension ok, and  X;,X,, ..., X, the Ml estimate fol (X;,X,, ... ,X) is [9]
Cq is the volume of thed-dimensional unit ball. Mutual in-
formation could be obtained by estimatifffX), H(Y), and [(X1, X5, ... X)) = f(K) = (M= 1)/k+ (m—1)(N) ‘<'//(nx1)
H(X,Y) separately and usin
parately g S+ o ln ).

N

[(X,Y) =H(X) + H(Y) = H(X,Y). (12

But for any fixedk, the distance to th&th neighbor in the
joint space will be larger than the distances to the neighbors
in the marginal spaces. Since the bias from the nonunifor- By choosing proper values fdt, the algorithm allows us
mity of the density depends of course on these distances, the minimize either the statistical or the systematic errors. The

biases inH(X), H(Y), and inH(X,Y) would not cancel. higherk is, the lower is the statistical error bf The system-

To avoid this, we notice that Eq11) holds foranyvalue  atic error shows exactly the opposite behavior. Thus, to keep
of k, and that we do not have to choose a fidedvhen the balance between these two errors, the best choick for
estimating the marginal entropigthis idea was used first, would lie in the middle range. But for some cases it makes
somewhat less systematically, ii9]). So let us denote by sense to deviate from this, e.g., when we want to find most
(i) and €,(i) the edge lengths of the smallest rectangleindependent signal sources. There the true values of the MI
around point containingk neighbors, and let,(i) andny(i)  are small, and thus also the systematic errors fak.dh this

D. Practical considerations
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case, it is better to use lardein order to reduce statistical The motivation for this is that any reasonable contrast
errors. On the other hand, when the data files are very londunction used for the ICA will give least dependent compo-
we do not have to worry about statistical errors and wenents which are also uncorrelated. In Sec. Il, we have seen
should choos& small. that this is not always the case, but that it is true whenever
Most of the CPU time for estimating MI with our new the components are realipdependentOne can take now
estimator is used for neighbor searching[9h we presented several different attitudes. The most radical is to abandon
three implementations which ranged from very simple butprewhitening altogetheifor different reasons not to use pre-
slow to sophisticated and fast. In the following, we shallwhitening, se¢20]). But this slows down the algorithm con-
always use the fastest implementation which uses grids tsiderably. Also, prewhitening can be detrimental only when
achieve a CPU time-Nlog N for N points. We will not use there are residual dependencies between the optimal compo-
rank ordering(as also discussed iff]), but we will add nents, and it is not clear what is the significance of such
small Gaussian jigglegamplitude ~107®) to all measured components. In the following, we shall always use prewhit-
values in order to break any degeneracies due to quantizati@ning unless we say explicitly the opposite. We shall always
in the analog-to-digital conversidi®]. assume that the prewhitening step has already been done,
and we will restrict the proper ICfor rather LCA transfor-
mations to pure rotations. As a third alternative, one could
IIl. MILCA WITHOUT USING TEMPORAL STRUCTURES first use prewhitening, but try at the end to see whether some
A. Basic algorithm nonorthogonal transformations improve the results further.

. . . . i We have not yet studied this strategy.
In this subsection, we will show how the linear instanta- y g9y

blem i ved using th . The aim of ICA is now to minimizd(X;---X,) under a
neous ICA problem is solved using the new MI estimator. Wepure rotatiorR. Any rotation can be represented as a product

will apply this then to. several artificial Qata sets which areg rotations which act only in some 22 subspaceR
constructed by superimposing known independent sources,y R (), where
il e

and we will compare the results with those from several

other ICA algorithms. Rij(@)(Xy X X Xp) = (X X =+ X -+ %) (17)
In the simplest case&(t) is an instantaneous linear super- . h
position of n independent sources  S(t) wit
=(51(0),85(1), ... ,$y(D)), X =CoSgx; +singx;, X =-singx +cosgx;. (18)
x(t) = As(t), (15) For such a rotation, one hsee Eq(10)]
whereA is a nonsingulan X n “mixing matrix.” This means I[Rij () X] = 1(X) = I(X{,Xj’) - 10X, X)), (19

that the number of sources is equal to the number of mea- the ch XX d tati b
sured components. In this case, we know that a decompoé'r-e" e change df(X, n) under any rotation can be com-

tion into independent components is possible, since the inRuted by adding up changes of two-variable Ms. This is an
verse transformation important numerical simplification.

To find the optimal anglep in a given(i,j) plane, we
8t =Wx() with W=A" (16 calculatedi;(¢)=1(X/ X)) for typically 150 different angles
position into strictly independent components is possible by-ourier components, and took then the minimum of the fit.
a linear transformation like Eq16), but one can still search The latter is useful becaudé¢) is not smooth in¢, for
for the least erendent components. . essentially the same reasons as discussdd2h We also
But even if Eq.(15 does hold, the problem of blind eq the augmentation proposed]it] to smoothi (X', Y").
source separatio(BS9, i.e., of finding the matrbW with- ¢+ \y5rked as well as, by and large, the Fourier filtering, but it
out explicitly knowingA, is not trivial. Basically, it requires |\ .-« ch slower.
thatx be such that the components of any Superpossion oy the resulting MILCA algorithm can be summarized:

=W’x with W' #W are not independent. Since linear Com- ;) prenrocesgcenter, filter, detrend, .) and whiten the data.
binations of Gaussian variables are also Gaussian, BSS ) For each pair(i,j) with i,j=1---n, find the angles

possible only if the sources are not Gaussian. Otherwise, any. . . oA N ot oy e

rotation(orthogonal transformatiors’ =Rs would again lead  Which minimizes a smooth fit td;;(¢)=1(X;,X}). (iii) If

to independent components, and the original sousaasild  1(X;...X}) has not yet converged, go back to stép. Oth-

not be uniquely recovered. Since any ICA algorithm will find erwise,§=X; are the estimates for the sources.

a more or less meaningful solution, we need a reliability test The order of choosing the sequence of pairs in p@ipis

for the obtained components. This is given in Sec. Il C.  not essential. In our numerical simulations, the convergence
As a first step, the matriXV is usually decomposed into speed did not differ significantly whether we went through

two factors,W =RV, where theprewhiteningV transforms the pairs(i,j) systematically or randomly.

the covariance matrix int€’=VCV'=1, andR is a pure .

rotation. Prewhitening is just a principal component analysis B. Numerical examples and performance tests

(PCA) together with a rescaling. The ICA problem reduces (a) As a first test, we study the set of 18 problems pro-

then to finding a suitable rotation for the prewhitened data. posed by Bach and Jord§2il] and studied also ifiL2]. Each
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TABLE |. Performance indicegmultiplied by 100 for two-component blind source separation, test
problem(A). The results in the first six column&astICA, Jade, Imax, KCCA, KGV, and RADICAlare
taken from Ref[12], where references to these algorithms are also given and where the probability distri-
bution functions(PDF9 “a"“r” are defined. The last two columns show the results of MILCA, first in its
simplest versior{column 7 and then with data augmentation as proposefl# (column §. Each perfor-
mance index is an average over 100 replicas, each replica consisting of 1000 pairs of numbers drawn

randomly from the PDFs. For MILCA, we usdd=10, and we fitted(q&) by Fourier sums with three

(MILCA) and five termgaugmented MILCA, respectively.

PDFs FastiICA Jade Imax KCCA KGV RADICAL MILCA MILCAaugmentey
a 4.4 3.7 1.8 3.7 3.0 2.1 2.7 2.4
b 5.8 4.1 3.4 3.7 29 2.7 2.9 2.5
c 2.3 1.9 2.0 2.7 2.4 1.2 15 1.0
d 6.4 6.1 6.9 7.1 5.7 53 7.0 4.3
e 4.9 3.9 3.2 17 15 0.9 0.9 1.0
f 3.6 2.7 1.0 1.7 15 1.0 0.9 0.9
g 1.8 1.4 0.6 15 1.4 0.6 0.6 0.6
h 5.1 4.1 3.1 4.6 3.6 3.7 3.4 3.3
i 10.0 6.8 7.8 8.3 6.4 8.3 7.9 8.0
i 6.0 45 50.6 14 13 0.8 0.7 0.8
k 5.8 4.4 4.2 3.2 2.8 2.7 2.4 2.3
| 11.0 8.3 9.4 4.9 3.8 4.2 4.1 3.3
m 3.9 2.8 3.9 6.2 4.7 1.0 1.0 0.8
n 5.3 39 321 7.1 3.0 1.8 2.0 1.6
0 4.4 3.3 4.1 6.3 4.5 3.4 3.4 2.9
p 3.7 2.9 8.2 3.6 2.8 11 1.6 1.2
q 19.0 153 433 5.2 3.6 2.3 2.9 1.9
r 5.8 4.3 5.9 4.1 3.7 3.2 35 2.7

mean 6.1 47 10.6 4.3 3.3 2.6 2.7 2.3

problem corresponds to a 1D probability distributip(x).
One thousand pairs of random numbem@ndy, each drawn
iid from p(x)p(y), are mixed as<'=xcos¢+ysing, y' =
-X sin ¢+y cos¢ with random anglep common to all pairs
(i.e., A is a pure rotation Using MILCA, we obtained then
the estimateA. This is repeated 100 times with different
angles¢ and with different random sets of paifs,y). To

assess the quality of the estimafbr(or, equivalently, of the
back-transformationW=A"%), we use the Amari perfor-

mance indexP,,, [22],

1

|pij|

(el
I:)err:_E‘z ( - +

2N;7Z1 \ maxpy

where p” :(A_J‘A)ij .

Results are given in Table(tolumn “MILCA”) and com-

maxpyj

1 o

same augmentation trick can be used also for MILCA, and

improves the results for very similar reasons. Indeed, our

results obtained with MILCA and with data augmentation,

given in the last column of Table |, are even better than those
of RADICAL. In the following tests, we did not use data
augmentation, because it is rather time consuming.

(b) As a second test, we study an example taken ffen
In involves five input sourcega sine wave, two different
speech signalgthe first half of “Houston, we have a prob-
lem” and “parental guidance is suggested” fr¢#8]), one

white Gaussian noise, and one uniformly distributed white
noisq (5000 data points eaglwhich are linearly mixed with

a 5X 5 matrix A to form five output signals. In mixing these
components, no time delay is used, i.e., the superpositions
are strictly local in time. For this example, it is possible to
find the inverse transformatiow/ =A~! up to a permutation

and up to scaling factors, because all sources are independent

of each other and only one has a Gaussian distribution. To

pared there to the results of previous algorithms given imssess the quality of this back-transformation, we again use

[12]. They are excellent on average and surpassed only byse Amari performance index.

the RADICAL algorithm proposed ifil2], which also uses
an entropy estimate based on neighbor distances, but for thg the sourcegwith uniformly distributed mixing matrices

differential Shannon entropié$(x’) andH(y’). Another fea-
ture used in[12] is data augmentationTo obtain a more
smooth dependence on the angleeach data vectdi,y) is

The results obtained with 200 different random mixtures

and with different realizations of the random channels for
each mixturg are compared in the left panel of Fig. 2 with

three standard algorithms: FastICH, JADE [24], and TD-
replaced by arR-tuple (with R=30) of nearby points. The SEP[25]. We found that FastiICA sometimes gets stuck in a
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FIG. 2. Test problentB), consisting of five input channels. Left
panel: Averaged performance indBy,, from the output of FastiCA 1;- 4

[1] (parameters with lowest M| JADE [24], TDSEP(same param-
eters as if25]), and MILCA (k=30). Right panel: same as left side,

but with total M1 | (k=3) used as a performance measure.

w

N

mutual information

tions can produce different results. The error bars shown in
Fig. 2 indicate the resulting uncertainty of the performance
measure, estimated from 20 realizations that differ only in

initial conditions. The errors of JADE and FastICA are 2 0

—_

2
3
4
local minimum, and runs differing only in the initial condi- ,
6
7

mainly due to their difficulty to separate one of the audio
channels from the Gaussian noise. TDSEP is not able to de- G, 3. Test problen(C), with seven input channels. Upper
compose the two noise channels, since it is also not design%%nel: Averaged (3-8, (k=3) from the output of FastiCA1]

for this purpose(it uses time structgres to separate §ig)1a|s (parameters with lowest MIJADE [24], TDSEP(same parameters
Very good results for all 200 mixtures are obtained by, in[25]) and MILCA (k=30). The horizontal line indicates the
MILCA, although the audio signals are quite noisy and haveye M| of the input channels. Lower panel: Pairwise MI estimates

nearly Gaussian distributions. The performance of JADE an(ii between all channel combinations, for the MILCA output compo-
FastICA compared to MILCA becomes better when the qual,cnts shown in Fig. 4diagonal is set to zejo

ity of the acoustic signals improves.

In addition to the Amari index, anothémore direct way . .
to judge the accuracy of the source estimates is to look at thtehat by MI. In Sec. V, we will show how to improve MILCA

. . . Olsuch that it can better separate components which have
estimated Mis. If and only if the sources were estimate nearly Gaussian amplitude distributions but different time
correctly, the Ml should be zero. In the following, we pro- Y P

) S A correlations. Using that improved MILCA will give a much
pose to use both the matrix of pairwise estimattis,s)  pigger performance difference with algorithms like FastiCA/
and the estimated total M(S;---§,). The important advan- JADE.
tage over the Amari index is that they can also be used when (c) Next we want to investigate the case where the decom-
the exact sources are not known. Low values of the MI in-position is neither perfectly nor uniquely possible. Such an
dicateboth that the data are a mixture of independent com-example can be constructed by simply adding one cosine
ponents,and the separation algorithm worked well in pro- with the same frequency as the sine and one more Gaussian
ducing someindependent components. Notice that it cannotchannel to the last test case. This now violates the assump-
be expected in general that the components found are idetion of independent sources, because the sine and cosine are
tical to the sources, e.g., if some of them are Gaussians. Istrongly dependent. The theoretical value for the Ml would
Fig. 2 again MILCA shows the best performances. be infinite, but a numerical estimator from a finite data
Notice the very big difference between FastICA/JADE sample gives a finite value, in our cd$8;- --S,)=0.72[26].
and TDSEP in the right panel of Fig. 2, which is much biggerBut for this example, perfect blind source separation is im-
than that measured with the Amari index. The first two havepossible also because the two Gaussians are not uniquely
problems in separating one of the acoustic sigisignal 4 decomposable. We want to know how an ICA algorithm per-
in Fig. 4) from the Gaussian, because it has a nearly Gausgerms in view of such problems. It should still be able to
ian amplitude distribution, but for the same reason this is noseparate those components which can be separated.
punished by a large MI between the outp(itaproved per- The total output Ml is shown in the upper panel of Fig. 3.
formance index, see later in Fig. 14TDSEP, using time We see that for all algorithms, the Ml is higher than the Ml
information, has no problem with this, but cannot separatdetween the input channels, which serves essentially as a
uniform from Gaussian noise—and is heavily punished forconsistency test. The difference is smallest for MILCA. The
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FIG. 5. Performance index distributions over 7000 triples of

FIG. 4. Seven output channels of the MILCA algorithm, test three-component mixtures. For histograrte,(b) the original
problem(C). spectra were decomposed, fa)—(e) their second derivatives.

Mis between all pairwifse channel combinatiqns obtainedOy choosing spectra randomly from the pool and applying
with MILCA are shown in the lower panel of Fig. 3. They random mixing matrices [37]. For each decomposition, the
show again that MILCA has done a perfect job: All compo- Amari performance index was computed. Figure 5 compares
nents are independent except for those which should not bgg gistributions for several different ICA algorithms includ-
MILCA output is shqun directly in Fig. 4. AIth_ough we do ing FastiCA[1], RADICAL [12], and Non-negative PCA
not show the |nput,_|t is clear that the separation has been 3RINPCA) [38]. The latter uses the fact that pure spectra are
successful as possible. , , non-negative and the same should hold for the estimates, so
(d) There are a number of blind source separation probge non-negativity is imposed as a soft constraint on the es-
lems in the field of analytical spectroscopy, where quantitaymatess (1) in an optimization procedure. But our simula-
tive ;peptral analysis of Ch‘?m'ca' mixtures is fprmulated 8%ions showed that this constraint is often not fulfilled, and in
multivariate curve resolution(for recent reviews, see ¢;me cases the output of NNPGAs well as that of other
[27-29 and as an ICA probleni80-32). Assuming Beer's  14rithmg is negative. To a large part, this is due to depen-
law, the spectrum of a ml_xture'of pure constituents Withyencies between the sources. Already prewhiter(ing,
spectras(») and concentrations; is x(v)=2Ai(v). Given  pca and rescalingsometimes leads to decorrelated compo-
a set ofN mixtures andN pure components, we can then nents which cannot be made non-negative by any subsequent
write this in vector notation as(») =As(»), analogous to EQ.  gation. Trying to enforce non-negativity neglecting other
(15). The ta.sk. is to _obtaln estlmate_é:u) for the pure com-  spects might then be counterproductive, and this might
ponents. This is the instantaneous linear ICA problem, exceffartly explain the relatively poor performance of NNPCA
that in most applications of interest the spectral sources argrig. 5a)).
not independent but have overlapping bands. This happens NNPCA has to be applied to the original spectra, while it
when chemical compounds in a mixture share several coms well known that using derivatives of spectroscopic signals
mon or similar structural groups that demonstrate nearly theyith respect to frequency can improve the resgse, e.g.,
same spectral patterns. N _ [30,32). Taking such derivatives extracts the spectral infor-
This difficulty makes mixture decomposition quite non- mation which is more independent between the souf2gs

trivial for many BSS techniques used in chemometrics, unin our numerical experiments, second-order derivatives ap-
less interactive band SeleCtI(lﬂg., SIMPLISMA[33], IPCA proximated by finite differences

[34], BTEM [35]) is employed to avoid using those parts of ()

the signals where severe overlaps reduce the quality of de- Xwi oy . .

composition. Such preprocessing made by hand is, of course, a2 |, X(vi—1) = 2X() + X(¥i11) (21)

a bit of an art, because these unsafe bands cannot be known '

a priori in a blind problem. Since the focus here is rather ongave the best performan¢89]. This is clearly seen in the

developing general purpose algorithms, we aim at usingXxample of FastiCAcompare distributiongb) and (c) in

MILCA without interactive preprocessing in order to esti- Fig. 5. But MILCA (e) and RADICAL (d) with second de-

mate its pure overall efficiency in cases when residual derivative data perform better than Fastl@é), and are almost

pendencies play a role. equally good when compared to each other. Furthermore, our
To test the performance of MILCA on typical spectral numerical results confirmed that non-negativity is satisfied

data, we collected a pool of 62 experimental molecular inwhenever the decomposition is succesghuhari index be-

frared absorption spectra in the range 550—3830'q®@22  low 0.05) (see also the discussion d0]). But whether this

data points eaghtaken from the NIST databag86]. This s fulfiled depends primarily on the dependencies between

test set was selected to contain organic compounds witthe original signals, and less on the algorithm employed.

common structural groupdenzene derivatives, phenols, al- A more detailed study of the potential of MILCA in mul-

cohols, thiolg so that their spectra have multiple overlappingtivariate spectral curve resolution will be given in a forth-

bands and, thereby, are mutually dependent. Then a sampteming publication[41] which will focus on the analysis of

of 7000 triples of three-component mixtures was constructe@xperimental mixtures and, in particular, on the comparison
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with recently developed interactive algorithms such as
BTEM [35].

1

C. Reliability and uniqueness of the ICA output

Obtaining the most independent components from a mix-
ture is only the first part of an ICA analysis. Checking the
actual dependencies between the obtained components
should be the next task, although it is most often ignored. We
have seen that it becomes easy and natural with MILCA,
which was indeed one of our main motivations for MILCA.
The next task after that is to check the reliability, uniqueness, 1725325383
and robustness of the decomposition. We have already dis- channel No.
cussed this in the last subsection for test exar@jebut not
very systematic. A systematic discussion will be given now. FIG. 6. Square roots of variabilities;; of I[R(X;,X;)] (with k

Recently proposed reliability tesf®—8 are based on =6) from MILCA output for test problen{C) (Fig. 4). Elements on
bootstrap methods or noise injection. We here present aifte diagonal have been set to zero.
alternative procedure which again makes use of the fact that
MILCA gives reliable estimates of thactual (in)dependen-
cies We test how much the estimated dependencies change
under remixing the outputs.

In the simplest case, a multivariate signal witttompo-
nents is an instantaneous linear mixture ofndependent g (w2
sources. This was the model we started with in Sec. IIl A. (X, X)) = ;j dolij(¢) (23
We assume it to apply wheq) all estimated pairwise MIs 0
petween all ICA components fall below a defined threshold{notice thatl;;(¢) is periodic in ¢ with period 7/2]. For
1(5,5) <Dmaxforalli,j=1,... nandi#j, and(ii) the over- unique §o|utions, the MI will change significan(lkargeaij),
all MI 1(3;---8,) is below another threshold. Notice that the Put it will stay almost constant for ambiguous outpigmall
first criterion alone is not sufficient, see the Appendix. 9ij)-

In real-world data, however, we are usually confronted Results for the MILCA output of test probler) are
with deviations from this simple model. The next simple shown in Fig. G(to aid in the interpretation, the actual output

possibility is that some pairwise Mis are still exactly zero, Signals were shown in Fig.)4The basic ICA model is vio-
but others are not. Let us draw a graph where each ohthe lated both in the Gaussian noise subspace and the sin/cos

output channels is represented by a vertex, and each paPPspace. In the Gaussian subspace, the components are in-
- . : PP dependent, but it should be impossible to find a unique de-
(i,]) of vertices is connected by an edgel(,5) > Dpax.

This give a partitioning of the set of output components intoS0MPOSition. Indeedgs s~0 (Fig. 6) andls~0 (Fig. 3).
connected clusterS,, ... ,C,, with m=n. If, in addition, the For the dependent componersin/cos subspagethe situ-

b h | - is bel h ation is different. We expect to hawe=0 also here, corre-
MI between these cluster§(Cy, ...,Cy), is below another 0 qing to the isotropy of the distribution in this subspace.

suitably chosen threshold, we consider each cluster to b t1 should b i th b the t .
independent(notice that we do not require all channels utl should be much larger than zero, because the two sig-

within a cluster to have a Ml above the threshblgl,,). This ~ nals are not independent. Indeed, we sge~0 andl, ,

is essentially our version of multidimensional IGA]. It ~ >0. In general, it depends on the specific application
uses exactly the same basic MILCA algorithm as definedvhether one should attribute any meaningsfowhen com-
above, and is thus much simpler conceptually than the “treePonentsi and j are not independent. Finally, we conclude
dependent component analysis”[8]. Its main drawback is from Fig. 3 (lower) and Fig. 6 that the channels 3 (dudio

that it is not sensitive to the actual strengths of the nonzergignaly, and 7 (uniformly distributed noisg are one-
interdependencies. A better algorithm which does take therflimensional sources, because they are independent of any
into account will be discussed in Sec. IV. channel,l3j=14;=1,;=0, and are reliablegs; =~ 04;~ 0+;

In addition to this first step of an ICA output analysis, we > 0.
have to test for the uniqueness of the components. For this
purpose, we check whether tliene- or multidimensional
sources obtained by the ICA algorithm indeed correspond to
distinct minima of the contrast function or whether other Because our aim is to apply MILCA to real world data,
linear combinations exist which show approximately thewe have to discuss the influence of measurement noise. In
same overall dependencies. An example for the latter case ibe literature, there exist several algorithms which are spe-
given by two uncorrelated Gaussian signals. They remaigially tailored to this problentsee, e.g., Refl], Chap. 15.
independent under rotatidd?2]. Typically, in order to obtain optimal performance, the noise

A good estimator for the uniqueness of the ICA output isis assumed to satisfy very special properties such as being
the variability of the pairwise Ml under remixing, i.e., under additive, uncorrelated, isotropic, and Gaussian. Below we
rotations in the two-dimensional plane, will present a modified MILCA algorithm which assumes

channel No.
~ (=) (3] D (] N

iy =104, %)) = 1 (i) FOT i # (22)

where the global minimum dfis at ¢= pin, and

D. Noisy signals
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FIG. 7. Unsmoothed estimates Idkp) for two randomly mixed FIG. 9. MILCA output components after minimizing

uniform distributions, corrupted with isotropic Gaussian measurer .
ment noises with different signal-to-noise rat®NR=«, 13, 7, 4, 1 !
(from top to bottom, plotted againstp.

--Xg) for the heartbeat example of Sec. Il E.

shows the averaged Amari index over 100 realizations with
that h t noi ith tv th different noise and mixing matrices.
tiei we have measurement noise with exactly these proper- t, requce this error, we modify MILCA to-MILCA

‘ . . ... _(noisy MILCA). At first we do a “quasiwhitening” with the
_ Alternatively, one can take.Just a standard ICA algonthmestimated covariance matrik=(C,~r1)"Y2 of the pure sig-
(in our case MILCA as described abgyand analyze how I
. ) . nals (see, e.g.[1], Chap. 15 to decorrelate the original
its output depends on the noise level. In the following, we . . .

sources. As a consequence of this, the noise will now be-

will compare both approaches. e C P "
We start with two uniformly distributed variables and mix €0M€ correlated, and with it also the entire "quasiwhitened

them with a random 2 matrix with a fixed condition num- Signal. Because of this, we should not minimize), since
ber. After that, iid Gaussian noises are added to each of th@ this way we would introduce a bias as seen in Fig. 7
two mixtures. The amplitudes in both channels are the sameéowards wrong values ofp. Instead, we minimizel(¢)
+% Iog[l—Cij(¢)2], where we have subtracted the “linear”
2 contribution[see Eq(7)]. In Fig. 8, we show again the av-
Xi(t) = 2 Aysi(D) + 7() (24)  eraged Amari index for the same realizations as used before.
=1 Making use of detailed information on the noise clearly im-
, roved the results, except for very small SNR. The amount
with (7,(t)7;(t"))=r &; &, For the case where we do not use Ey which it improves degends onythe condition number of
any information of the measurement noise signglé) are  ne mixing matrix. For matrices far away from singularity
then simply used as input in MILCA. In Fig. 7, we shd{s) (low condition numbey, the quasiwhitening has little effect
for the same mixing matrix but different signal-to-noise ra-and there is hardly any difference, while for large condition

tios SNR=vars(t)]/r. We see that becomes flattexthe ~ numbers the two mixtures are nearly the same and it is im-
variability with respect to the mixing angle decregseith possible to obtain good results with either algorithm.

decreasing SNR43]. The presence of noise leads also to a  Finally, before leaving this subsection, let us say a few
shift of the minimum. Both effects introduce errors in esti- Words about outliers. Outliers are just a special case of noise.

mating the original mixing matrix. The upper curve in Fig. 8 Because our Ml estimator is based on kheearest-neighbor
distribution, outliers cause fewer difficultiéRef. [12]) than,

e.g., in kurtosis-based algorithms.

0.5
5 E. A real-world application
§O'4 Finally, let us apply MILCA to a fetal ECG recording
8o3 from the abdomen and thorax of a pregnant wongight
g electrodes, 500 Hz, 5sWe chose this data set because it
g02 was analyzed several times with different ICA algorithms
8 [5,6,9,44 and is available on the wel45].

0.1 The output components of MILCA are shown in Fig. 9

[46]. We usedk=30 neighbors for estimating MI, and to

% 11 o 7 5 3 1 obtain the minima ofij(qb) we fitted with three Fourier com-
SNR R
ponents. The success of the decomposition is already seen by
FIG. 8. Averaged Amari index against the signal-to-noise ratio.visual inspection. Obviously, channels 1 and 2 are dominated
The condition number of the mixing matrices is 6. The upper curvedy the heartbeat of the mother, and channel 5 by that of the

(in the SNR range from 7 to)3s for standard MILCA, the lower child. Channels 3, 4, and 6 still contain heartbeat compo-
for n-MILCA. nents (of mother and child, respectivelybut look much
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1 , 0.4 placement of the electrodes, we should then expect to pick
? up =3 different components from each heart. These compo-
2 0.3 nents must be strongly dependent on each other, even after

3 having been whitenef19]. Thus each heart must contribute
4 0.2 to at least three output components amy linear ICA
5 ' scheme. For the mother heart we have indeed found two
6 components. The fact that we have not clearly identified
7 0.1 more dependent components in the output should be consid-
8 ered as a failure of the instantaneous linear algorithm and
T 53456 78 0 will be dealt Wlt_h more syst_ematlcally in Sec. V.
In any case, in view of this we have to expect that outputs
1 in real-world applications are not independent but come in
2 04 connected clusters. Moreover, we should expect that even
3 0.25 within one cluster there are more or less strongly connected
4 0.2 substructures. We have already discussed in Sec. IlIC a
5 0.15 simple way to identify these f:lusters. _In the present section,
we present a more systematic analysis.
6 0.1 Our strategy is to estimate a proximity matrix from the
U 0.05 Mls, and then to use a hierarchical clustering algorithm to
8 obtain a dendrogram. No thresholds are used in constructing
12345678 the dendrogram, i.e., it is constructed without making any

decision about which MILCA output channels are indepen-
dent or not. Only after its construction do we decide, usually
based on heuristic reasons and arguments of practicality and
abilities oy of Iij(d)). In both panels the values on the diagonal are sefulness, which channels are actually grouped together.
set to zero. This is more convenient, usually, than the algorithms of
[3,4,50, where this decision stands at the starting point of
more noisy. Channels 7 and 8 seem to be dominated bye algorithm or is an essential part of it.
noise, but with rather different spectral compositions. A first technical problem concerns the choice of the prox-
In order to verify this also formallywhich would be es-  imity matrix. One might be tempted to use MI directly. But
sential in any automatic real-time implementagiowe first  we want to include the possibility that some of the channels
show in Fig. 10(upper panelthe pairwise Mis. We see that to be grouped together are already multidimensional by
most Mis are indeed small, except the one between the firshemselves. In this case, using MI would introduce a bias:
two components. This indicates again that the first two commultivariate channels not only tend to carry more informa-
ponents belong to the same source, namely the heart of th@n than univariate ones, they also will have larger Mis.
mother. But some of the other MIs seem to be definitelyTherefore, we propose to use as a similarity meafl4g
nonzero, even if they are small. This indicates that the de-

FIG. 10. Upper paneli between all the pairwise combinations
of the signals shown in Fig. 9. Lower panel: Square roots of vari-

composition is not perfect, as is also seen by closer inspec- _ T(é,éf) (25)
tion of Fig. 9. 1T dim(3) + dim(g)’

Finally, we show in the lower panel of Fig. 10 the vari-

abilities under remixing. They confirm our previous findings.where dintx) is the dimension of the variablg, i.e., the

In contrast to the sine/cosine pair in test exanipjethe first  number of its components.

two components have nonzeog showing that the distribu- In most cluster algorithms, the proximity matmkis used

tion in this subspace is not isotropic and that one can minienly for the first step. In the subsequent steps, proximities for

mize the interdependence in it by a suitably chosen demixelusters are derived from it in some recursive wWay]. In

ing. Apart from that, the biggest values @fare for channels the present paper, we propose to use “Ml-based clustering”

1, 2, and 5, showing that these channels are most reliably an@1IC) [14], which is based on the grouping property [E9).

uniquely reconstructed. They are just the channels dominatebhus, a cluster of output channels is just characterized by the

most strongly by a heartbeat. multivariate signal formed by the tuple of its individual
channels, and the proximity measure is still given precisely
by Eq.(25) at each level of the hierarchy.

IV. CLUSTER ANALYSIS In summary, our cluster algorithm is as follows. We start

We pointed out already that the usual assumption of indeWlth n (usually univariate MILCA output channelss, i

pendent one-dimensional sources as in @§) is often un- ., and we computé; according to Eq(25). After
realistic. Take, e.g., the ECG discussed in the previous suk5halt we enter the following recur5|0(1) Find the pair with
section, and assume that both hearts—the one of the mothBinimum distance in the matrix, say clustérand j; (ii)
and the one of the fetus—are independent chaotic dynamic&PMPine the clustersandj to a new clustetij) with mul-
systems. A chaotic system with continuous time must have divariate dataS;, and attribute to it a he|gHt(s §) in the
least three excited degrees of freed@t@]. With any generic  dendrogram, thereby the total number of clusters is reduced
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— x(t) =[x(t- D, x(t- 27, ... x(t-mn]". (26)
0.7r . .
Thus one characterizes the “state” of a signal at tiniegy
06h giving not its value at itself, but atm previous times. This
makes sense of course only when there is any time structure
.go.s- in the signal. Similarly, we can also embed multivariate sig-
£ : nals. Forn measured channels, one obtains therebynan
7;{ O.4r X m “delay matrix”
g o3 X(1) = [xq(0), ... Xn(D)]. (27)
0.2f To decompose an instantaneous linear mixture sig-
nals with either non-Gaussian statistics or with nontrivial
01y time structure, we propose to simply minimize the Ml,
[ .
1 2 7 4 3 5 6 8 1(s:(1), ... ,S,(t)) = min. (28)
FIG. 11. Dendrogram for Fig. 9. The height of each clustr  Notice that we have considered here the delay vectors as
corresponds td(X;,X;) (k=6). joint entities, i.e., we do not include in E@28) the Mis

between the different delays of the sameMore explicitly
by 1, n—n-1; (iii) if the new value ofn is 1, then exit; [99],
otherwise(iv) update the proximity matri®;; and go to(i). _ _ _

The dendrogram obtained in this way for the ECG data of | (D e o) Z10a(t=), . x(t=mm),
Sec. Ill E is shown in Fig. 11. In this figure, two clusters are Xot=17), ... Xo(t=m7), ...,
clearly distinguishable, the mother cluster containing chan-
nels 1, 2, 3, 4, and 7, and the fetus cluster formed by chan-
nels 5 and 6. This agrees perfectly with the interpretation "
given in Sec. Il E. One can of course debate whether, e.g., - 2 1(4(t=7), ... X(t-m7)
channel 7 belongs to the mother cluster or not, but this can =1

X,(t=17), ... Xy(t—m7))

be decided as it seems most convenient, and it will in general n

have little effect on any conclusions. One way to make use of => H(X;(t)) = H(x4(0), ... Xy(1).

such a clustering is in cleaning the data and separating the i=1

individual sources. For that, one prunes everything except (29
the wanted cluster, and reconstructs the original channels b_}( . , . ) .
applying the inverse of the matriw/. Results obtained in 10 Minimize this, we proceed again as in Sec. lll, i.e., we
this way will be shown in the next section, after having dis-d€compose  the  rotation ~ needed to  minimize
cussed how to take into account temporal structures. [(X1(t), ... Xy(1)) into rotations within each of then(n

—-1)/2 coordinate planes. Each of the latter rotations still
involves rotations of delay coordinate pairs, but this can be
V. USING TEMPORAL STRUCTURES further decomposed intm rotations where only one delay

A. Instantaneous demixing that minimizes delayed mutual coordinate pair is rotated. We thereby obtain

informations 1 X0, o X, ) =1 X0, . X))
Until now we have not used any time structure in the

signals. In the following, we shall assume the signals to be =100, (1) = 10x(1), %1(1))

stationary with finite autocorrelation times. ICA algorithms =1(x(t=7), ... x(t—mn)

in the literature either use no time information at @RADE

[24], FastICA[1], INFOMAX [52], ...) o, if they do use i, 104t =7), ... x(t=m))

they use only second-order statistigdMUSE [53], TDSEP —1(X (t=7), ... X (t—m7)

[25],...). The first group is not able to decompose two Gauss- , ,

ian signals with different spectra, while the second group is —10G(t=7), ... x(t-mm)

not able to separate two temporally white signals with differ- +m1(X (t), %] (1)) = 104(1), % ()], (30)

ent amplitude distributions. Obviously, one has to make use

of time structureand higher-order statistics, to obtain opti- where we have used in the last term the fact that

mal results in generdR,54. This is precisely what we will (X (t),x{ (1)) is independent of due to stationarity. Im=2,

do in this subsection. this is again a sum of pairwise Mls. th>2, we have to
Normally, the first step in nonlinear time-series analysis ofestimatem-dimensional Mls directly.

univariate signals is delay embeddif4y]: One constructs a To illustrate this on a simple example, let us assume two

formally m-variate signal, for anyn>1, by simply forming  channels where,(t) andx,(t) are instantaneous mixtures of

m-dimensional “delay vectors” with a suitably chosen delaytwo Gaussian signals with the same amplitude distribution

T but with different spectrax; is white (iid), while x, is red
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FIG. 14. Test probleniB) of Sec. lll consisting of five input
channelgcompare with Fig. 2 Algorithm “MILCA*” now refers
to the minimization of Eq(28). The gray bars on the right panel
show the full Ml given in Eq(28). The embedding parameters are
150 200 m=2, 7=1.
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FIG. 12. Upper panel: scatter plot of the two Gaussian sources B. Demixing with delays
with different spectra. Lower panel: Output of the modified MILCA  The most general linear demixing ansatz for a stationary
algorithm(rzlnand_m:Z), where the white Gaussian is on top and system assumes superpositions of the observed sigiidls
the red Gaussian is on the bottom. delays Using up tom delaysr, 27, ... ,mr, we thus make the

and was obtained by filtering with a Butterworth filter of ansatz(see, e.g., Refl], Chap. 19

order 6 and with cutoff frequency 0.3. For simplicity, we A N m ; N
assume the mixing to be a pure rotation. Then a scatter plot §1 = 2 > Wixj(t—k7) = E Wi Xj(t), (31
of the vectorqx,(t),x,(t)) is completely featureless, see Fig. j=1k=1 =1

12 (uppep, and will not allow a unique decomposition. But wherex(t) is a delay vector as defined in E@6) and
using delay embedding wittn=2 is sufficient to obtain the

original sourcesFig. 12, lower pangl(see also Fig. 13 wi = [wg - wif]. (32

Similarly good results were obtained with the less trivial Since we have now linear superpositionsnof m measure-

examples of previous sections. In particular, we tested thﬁwentsxj(t—kr) on the right-hand side, we can also determine
algorithm on test problent) of Sec. 11l B (Fig. 14. The the same number &(t) for each value of, i.e., the index
performance of MILCA is improved substantially, even with in Eq. (31) runs from 1 tonm ’ ’

m=2. The delayed M[Eq. (28)] which make use of the time This ansatz is obviously more appropriate than instanta-

structure serves as a better performance vdkig. 14 o . . :
(right)]. Now JADE and FastICAF\) are also heavéiily gunished neous mixing, if the signalg;(t) are themselves superposi-
' tions of delayed sources. If they involve a finite humber of

for not separating one audio signal from Gaussian ngse elavs
one can see, the Ml for TDSEP is nearly unchanged becausde yS,
the time correlation in the output is minimal '

x(t) =2 > alfs(t—k7), (33

i k=1

o
(3}

Eq. (31) with finite m would not give the exactdemixing,
since inverting Eq(33) would require an infinite number of
delay terms. Also, Eq.31) in general does not correspond to
the inverse of Eq(33), because its solutions are in general
not components of any delay vectors. But it should definitely
be a better ansatz than the instantaneouy Esj.
Apart from that, we would anyhow not expect Eg§3) to
8 /a 38 /2 be the correct model in most applicqtions. The mgin reason
angle why we believe that Eq.31) is useful in many applications
is that it can cope much better with the situation discussed at
FIG. 13. Change of under rotation, for the Gaussian model the beginning of Sec. IV. Assume for the moment that there
shown in Fig. 12. The nearly horizontal curve shows the behaviois a single source. Different sensdes, e.g., different ECG
without, the sinusoidal one the result with using delay embeddingcontact$ typically see different projections of this source,
Here the actual mixing angle is 0. and the signalg;(t) can therefore be considered as different

1
»

mutual information
o ©
N (5]

e
—

(=)

o
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FIG. 15. Upper panel: Two channels of the ECG of a pregnant
woman. Lower panel: MILCA output from these two channels.
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coordinates describing its dynamics. As pointed out by Tak-
ens [47], delayed values of one single signal can also be FIG. 16. MILCA output from the delay embedded two-channel
considered as different coordinates. Our demixing ansatz b&CG with embedding dimensiom=3.
sically reflects the hope that suitable superpositions of de-
layed values ok;, say, can mimic any other signai big clusters corresponding to the mother and to the fetus.

To illustrate this, we consider again the above ECG re-There are also some small clusters which should be consid-
cording. We assume for the moment that only the two chanered as noise.
nels with the most pronounced fetus heartbeat are available For any two clusters(tupleg X=X;---X, and Y
and try to decompose them into mother and fetus heartbeat.Y;---Y,, one hasl(Xy,...,Yy)=1(X)+I(Y). This guaran-
These two channels are shown in Fig.(1dp). They are still  tees, if the Ml is estimated correctly, that the tree is drawn
dominated by the mother heartbeat. But Repeak of the properly, i.e., each parent node is above the two daughter
mother has a very different shape in both channels: In th@ods. The two slight glitchelsvhen clusters 1-14 and 15-18
lower trace it is mainly positive, while it has both positive join, and when 21 and 22 are joined with]2&sult from
and negative components in the upper. It is therefore cleagsmall errors in estimating MI. They do not affect our conclu-
that there cannot exist an instantaneous superposition tions.
which the mother’s heartbeat does not contribute. Instanta- In Fig. 19, we show the matrices of pairwise Mlgoper
neous ICAmustfail for this case, as is indeed seen in the pane) and of pairwise variabilitieglower). They are as ex-
lower two traces of Fig. 15. pected, and they show much more pronounced structures

In order to obtain the least dependent components obtairthan the matrices without delay embeddiifdg. 10). For the
able with Eq.(31), we minimize again the MI. But now, in MlIs, one can see a clear block structure, i.e., the mother and
contrast to the previous subsection, the output varigle  fetus components are now indeed more independent, as sug-
is not delay coordinates of any sources, and therefore we

must minimize the full Ml betweeall s;(t), O . o S ————————
P T i.. Homeefieend. n . dormrfomeened]
[(s(t), ... ,Sym(t)) = min. (34 Bttt N ———
Attt
The minimization is done again, as in all previous cases, by S - - - =
performing successive transformations in 2D subspaces and 3 T o Bt RS S A ot
by using Eq.(10). In terms of the actual algorithm, the only Y A T . W e o
difference from the previous subsection is that we now make et i W st i A s
rotations inall subspaces. it st St et
In our application to the fetal ECG, we use embedding P e P T VTSR T
dimension m=3 and the smallest possible delay; 13 PRI oA st e o Sty
=1/500 s'. Results for the two channels shown in Fig. 15 o e it e e
are now shown in Fig. 16. The separation is now improved. :6# P T ey
Although we still have one output channel where mother and 17 oA Ao g P PN S Aoa Po
fetus are strongly mixedchannel no. % channel no. 6 is Lttt e e et ettt
now practically a pure fetal heartbeat. ;:WW
Finally, we applied this method to all eight channels of the B ey ———
ECG. Using agair=3 gives altogether 24 output channels. 22 e A oo ety
They are shown in Fig. 17, and we can clearly see which ESW
ones are dominated by the mother heartbeat, which by the 40' T 2 8 4 tmeen

fetus, and which by noise. In order to do this more objec-
tively, we again apply the cluster algorithm of Sec. IV, with  FIG. 17. MILCA output from the embedded eight-channel ECG
the result shown in Fig. 18. There, one can clearly see twgk=100m=3).
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12345 and fetus contributions estimated without delay embedding),

and of the two contributions estimated with delay embeddihg.
FIG. 18. Dendrogram for Fig. 17. Heights of each cluster cor-
respond td (X, X;) of the clusterij(k=3). A e AR A _
P ( ! l) J( ) Xj,k(t'C) = W(Jlk)lpcs(t), Wi,(j,k) = W:j (36)
gested also from the traces themselves. From the right panelre in general not delay vectors, i.e.,
we see that the main mother channgls-4) and the fetus N _ . _
channelg7 and § are very stable. The rest is mostly noise, Xjke1(t;C) # X (t = 7,C). (37
and is not stable as indicated by the very small VariabilitieS”‘] view of this, one has to make some heuristic decision

The final result of MILCA is obtained by pruning every- \hat to use as a cleaned signal. We use simple averages,
thing not belonging to the cluster of interest,

m
%(t;C) = %2 % (1 +k7;C). (39
A A §(t) ie clusterC k=1
S(0 — PcS(t) = 0 otherwise (35) We do not show all eight full traces for the mother and fetus,
because this would not be very informative: the results are
too clean to be judged on this scale. Instead, we show in Fig.
and performing the back-transformation. At this stage, ther@0 blow-ups of one of the original traces and the contribu-

arises the problem that the reconstructed signals tions to it from the mother and from the fetus. The separation
is practically perfect.
Before leaving this section, we should point out that one
m can, in principle, also construct algorithms in between those
5 = 0.3 of the last two subsections. In Sec. V A, we had used delays
- to minimize the lagged MI, but we had not used the delays in
10 2 .
0.2 the demixing. In the present subsection, we have used the
15 same delays both for minimizing Ml and for demixing. A
6. generalization consists in using delays in the demixing,
20 ' but minimizing the MI with additionaim’ delays. Thus we
make the same demixing ansatz E8l) as above, but we
£ W 15 120 g minimize
0.5 I1(s1(1), ... ,Sym(t)) = min, (39
0.4 where we have used the definitionl@$,(t), ...) given in Eq.

(30), and §(t)=[§(t-7),5(t-27,... §t-m'n]". Up to

03 now, we have not yet applied this to any problem.
0.2
0.1 VI. DISCUSSION

There is by now a huge literature on independent compo-
nent analysis. Therefore, most of our treatment is related in

FIG. 19. Upper panel: Pairwise MIs between the estimated comSOme form to previous work. One of our basic premises was
ponents shown in Fig. 17. Lower panel: Square roots of variabilitieghat we did not care so much about speed, but we wanted as
aij of 1(X;,X;) (with k=6). Elements on the diagonal have been setprecise a dependency measure as possible. Our claim that
to zero. this is provided in principle by Ml is of course not new. But

5 10 15 20
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we believe that our estimator vianearest-neighbor statistics mainly used in geophysics. Indeed, we consider blind source
is new and provides the most precise mutual informatiorseparation algorithms based on temporal second-order statis-
estimate. It is closely related to similar estimatorsddfer-  tics (AMUSE, TDSEB as more closely related to multivari-
ential entropieswhich had been used ifll1,12, and the ate SSA than to other ICA methods based on nonlinear con-
quality of our results in the most simple 2D blind sourcetrast functions.
separation problem is very similar to that[ib2]. The main While we discussed also a number of other applications
virtue of our MI estimator, compared to all previous Ml es- and test models, our main test problem was the ECG of a
timators, is the numerical fact that it becomes unbiased whepregnant woman, and the task was mainly to extract a clean
the two distributions are independent. fetal ECG. We have chosen this partly because this ECG was
While using differential entropies instead of Ml would already used in previous ICA analysgs6,44. We believe
give the same quality and somewhat simpler codes for théhat our method clearly outperformed these and gives nearly
basic blind separation problem, using Ml has other advanperfect results, although we should admit that the signals to
tages: with it we can estimate the residual dependencies bstart with were already exceptionally clean. It would be of
tween the output components. Our use of this knowledge fointerest to see how our method performs on more n¢syl
estimating the output uniqueness and robustness, by meastinus more typicglECGs. Obtaining fetal ECGs should be of
ing how the dependencies change under remixing, seems tmnsiderable clinical interest, although it is not practiced at
be new. Previous authors used for this problem resamplingsresent, mainly because of the formidable difficulties to ex-
and/or noise additiofi6—8]. tract them with previous methods. In this respect, we should
In addition to this, we used the MIs between the outputsmention the seminal work 469,60, where fetal ECGs were
to cluster them, and we then used this clustering to obtain thextracted even fronunivariate signals using locally nonlin-
contributions of the individualmultidimensiongl sources to  ear methods. It would be interesting to see how our method
the measured signals. The observation that “independentompares with such a nonlinear method when the latter is
component analysis will in general, when applied to realused for multivariate signals.
world data, not give independent components is not new ei- Throughout the paper, we usedtal Ml as a contrast
ther [3-5). We stress it by calling our approach a “least de-function. One mighta priori think that the sum of all pair-
pendent” component analysis. Our detailed implementationise MIs would be easier to estimate, and could be as useful
of this idea seems to be new, not the least because our cluas the total MI. Neither is true. One reason for the efficiency
tering algorithm is novel and uses a specific property of Mlof our algorithm is thathangesof the total Ml under linear
not shared by other contrast functions. remixings can be estimated by computing only pairwise Mls
Although the extension of our algorithm to data with time (except for the method of Sec. V A with embedding dimen-
structure discussed in Sec. V A seems straightforward, thision m>2). Thus one needs to compute the full high-
strategy of combining in the contrast function deviationsdimensional Ml only once. For all changes during the mini-
from Gaussianity both at equal times and at nonequal timemization, computing pairwise Mls is sufficient. But this does
has been considered in very few papers dalp4]. We be-  not mean that total Ml is essentially a sum of pairwise Mls.
lieve the present paper is the first which uses directly Ml forwe showed in the Appendix that this can be very wrong. And
combining these two aspects. In Sec. V it was shown thaive found in more realistic applications that the sum over all
this can substantially improve the separation, e.g., of audipairwise MIs sometimegicreaseswhen we minimize total
signals. MI. Therefore, we consider the sum over all pairwise Mls as
Both the ansatz of Sec. V A and the method of demixinga very bad contrast function.
with delays in Sec. V B are entirely based on MI, and use This is somewhat surprising if one considers ICA as a
essentially the same algorithm. Therefore, also the generalgeneralization of PCA. PCA can be viewed as minimaliza-
zation mentioned at the end of Sec. V B uses essentially thiion of the sum over all squared pairwise covariances. But
same basic algorithm. This last generalization was nevewe believe that this close relation between ICA and PCA is
considered before, but demixing with delays is of course aomewhat misleading anyhow. It is usually based on this
very widely treated conceptsee, e.g.[1]). It is usually analogy that the data are firgtewhitened before the ICA
called “convolutive mixing.” In our presentation, we stressedanalysis proper is made, which is then restricted to pure ro-
several features which are typically overlooked. One is thatations. We showed by means of a counterexample that this
the “convolutive” demixing ansatz Eq.31) is in general, can lead to a solution which doast have minimal MI. This
when the sources;(t) are not strictly independentjot  was a rather artificial example, and the problem might not be
equivalent to a convolutivemixing ansatz, because the serious in practicéall our results were obtained, for simplic-
sources then will not be components of delay vectors. This ifty, with prewhitening. But one should keep it in mind in
also the reason why we avoided the term “convolutive mix-future applications.
ing.” Finally, we should point out that Eqg9) and (10) hold
Just as ICA may be considered as a generalization of prirfor the exact MI, but are only approximately true for our
cipal component analysi@CA) to non-Gaussian contrast estimators. Therefore, working directly on higher-
functions, mixing with delays is a generalization of multi- dimensional Mls, without breaking their changes down to 2D
variate singular source analysigSSA) [56,57] to include contributions, can give slightly different results. We found no
non-Gaussianity. Univariate SSA, see, e[49,58, is often  big systematic trends, although we expect in general that
considered as an alternative to Fourier decomposition andstimates using the smallest dimensions are most reliable.
has found many applications, while multivariate SSA wasThe reason is that they are based on smaller distances for
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fixed k, or use largek when using the same distances. TheAndreas Ziehe for invaluable discussions and comments.
first reduces systematic errors, the second statistical ones.

The decrease in CPU time when using Et) to decrease APPENDIX
the effective dimensionality is a further important point. In this appendix, we give two counterexamples showing
somewhat counterintuitive features of the MI. In the first
VIl. CONCLUSION example, we have two continuous variables, and the joint

i i . density is constant in an L-shaped domain,
In the first part of the paper, we discussed the classical

linear instantaneous ICA model and introduced a new algo- D ={[0,l,] X [0,e] U [0,e] X [O,I,]}. (A1)
rithm which shows better results than conventional ICA al-, . : . . .
gorithms. Our algorithm should be particularly useful for real I.t 'i Z€ero SUtS'.?r?DH_It 'IS easllz/ls_ee)ln t?ft_(x)' Y)Tjh 'r.‘t;he
world data, since it works with actual dependencies betweeHmI €%, with h=plog p p)logi~~p) and with p
reconstructed sourcdas measured by mutual informatjon =1/ (I+1y). In this limit, the marginal distributions are su-
and thus easily allows us to study the question of how indeP€rPositions of & peak atx or y equal to zero, and a uni-
pendent and unique are the found components. form distribution on[0,1]. The components have relative
In the following sections, we discussed the case wherd/€ightsl,:ly. The only information about learned by fixing
outputs can be grouped together for a meaningful interpretak IS N Which arm the paifx,y) is located, and for thif bits

tion. We again saw that MI has some properties which make&re sufficient. _ _ _
it the ideal contrast function, also for this purpose. On the other hand, any linear transformation applied to

Finally, when we included time-domain structures, weth€ (x,y) plane would give an L-shaped figure with at least
could again use the same estimates of MI, with basically th&ne oblique arm. For such a distribution, knowixgvould
same algorithms. This—and the excellent results when apsPecify y with an accuracy~e, and thusl(X,Y)~-loge
plied to a fetal electrocardiogram—suggests that our method > for e—0. But the covariance betweefiandY is not
of basing independent component analysis systematically ofero, hence the minimal Ml is reachgdr smalle) when the
h|gh|y precise estimates of Ml is very promising_ It is true correlation coefficient is nonzero. A more detailed analySiS
that our method is slower than existing algorithms like Shows that(X,Y) of the distribution rotated by an angigis
FastICA or JADE, but we believe that the improved resultsnot symmetric undetp— —¢, if I, #1,.
justify this effort in many situations, in particular in view of ~ The second example is one of three random variakles

the ever-increasing power of digital computers. Y, and Z which are pairwise strictly independent, but glo-
The software implementation of the MILCA algorithm is bally dependent. For simplicity, the example uses discrete
freely available onling61]. and indeed binary variables. We have thus eight probabilities

p(x,y,z) for each variable being either 0 or 1, and we chose

them asp(0,0,0=p(1,1,0=p(0,1,)=p(1,0,)=1/8+¢

and p(0,0,)=p(0,1,0=p(1,0,0=p(1,1,1)=1/8-¢. For
We thank Dr. Ralph Andrzejak, Dr. Thomas Kreuz, andthis choice, all pairwise probabilities are 1/4, B(X,Y,Z)

Dr. Walter Nadler for numerous discussions. H.S. also thanks: 0.

ACKNOWLEDGMENTS

[1] A. Hyvarinen, J. Karhunen, and E. Ojmdependent Compo- IEEE Workshop on Neural Networks and Signal Processing
nent AnalysigWiley, New York, 2003. (NNSP '03, Toulouse, France, 2003, edited by C. Molina, T.
[2] A. Cichocki and S. AmariAdaptive Blind Signal and Image Adali, J. Larsen, M. Van Hulle, S. C. Douglas, and J. Rouat,
Processing: Learning Algorithms and Applicatiorggviley, pp. 259-268.
New York, 20032. [9] A. Kraskov, H. Stogbauer, and P. Grassberger, Phys. Rev. E
[3] F. R. Bach and M. I. Jordan, J. Mach. Learn. Rés.1205 69, 066138(2004).
(2003. [10] O. Vasicek, J. R. Stat. Soc. Ser. B. Method88, 54 (1976
[4] A. Hyvérinen, P. O. Hoyer, and M. Inki, Neural Compuit3, [11] D. T. Pham, IEEE Trans. Signal Procegk8, 363 (2000.
1525(200D. [12] E. G. Learned-Miller and J. W. Fisher Ill, J. Mach. Learn. Res.

[5] J.-F. Cardoso, ifProceedings of the International Conference 4,1271(2003.
on Acoustics, Speech, and Signal Processing (ICASSP '98)13] L. F. Kozachenko and N. N. Léonenko, Probl. Inf. Trans2,

(IEEE/Causal, Seattle, 199%. 1941. 95 (1987.
[6] F. Meinecke, A. Ziehe, M. Kawanabe and K.-R. Miiller, IEEE [14] A. Kraskov, H. Stdgbauer, R. G. Andrzejak, and P.
Trans. Biomed. Eng49, 1514(2002. Grassberger, e-print cond-mat/0311039.

[7] S. Harmeling, F. Meinecke, and K.-R. Mdller, in Proceedings[15] T. M. Cover and J. A. ThomasElements of Information
of the International Workshop on Independent Component  Theory(Wiley, New York, 199).
Analysis (ICA 2003), Nara, Japan, 2003, edited by S. Amari, [16] P. Grassberger, Phys. LettO7A, 101(1985.
A. J. Eichocki, S. Makino, and N. Murata, pp. 149-154. [17] R. L. Somorjai,Methods for Estimating the Intrinsic Dimen-
[8] J. Himberg and A. Hyvérinen, in Proceedings of the 2003 sionality of High-Dimensional Point Sets Dimensions and

066123-16



LEAST-DEPENDENT-COMPONENT ANALYSIS. PHYSICAL REVIEW E 70, 066123(2004)

Entropies in Chaotic System®dited by G. Mayer-Kress [40] A. Cichocki and P. Georgiev, IEICE Trans. Fundamentals

(Springer, Berlin, 1986 E86A, 522(2003.
[18] J. D. Victor, Phys. Rev. E66, 051903(2002. [41] S. A. Astakhovet al,, e-print physics/0412029.
[19] A. Kaiser and T. Schreiber, Physica 166, 43 (2002. [42] Although the generalizations to multidimensional ones would
[20] A. Ziehe, P. Laskov, G. Nolte and K.-R. Miiller, BLISS Tech- be in principle straightforward, in the following we shall dis-
nical Report, 2003. cuss only the uniqueness of 1D output components. In particu-
[21] F. R. Bach and M. I. Jordan, J. Mach. Learn. R&s1 (2002. lar, we shall treat even those output channels as 1D which are
[22] S. Amari, A. Cichocki, and H. H. Yangd New Learning Al- not independent. This might seem a bit unnatural, but it is

easier to discuss and nothing is lost in comparison with the

gorithm for Blind Source Separatipin Advances in Neural i )
case where only independent clusters are checked for unique-

Information Processing ,8edited by D. S. Touretzkyet al.
(MIT Press, Cambridge, MA, 1996pp. 757-763. ness. o _
[23] http://www.jokes. thefunnybone.com/waves/ [43] The curves shown in Fig. 7 seem to be nearly symmetric
[24] J.-F. Cardoso and A. Souloumiac, IEE Proc. F, Radar Signal around the minimum. But we show in the Appendix that this
Process.140, 362(1993 ' ' need not be the case in general.
[25] A. Ziehe. and K-R. MUII.er irProceedings of the 8th Intema- [44] L. D. Lathauwer, B. D. Moor, and J. Vandewalle, in Processing

tional Conf Artificial N | Networks (ICANN '98 of HOS, Aiguabla, Spain, 1995.
|on§ onterence on Artl |§|a eura . etworks ( h 98) [45] Daisy: Database for the Identification of Systems, edited by B.
Berlin, Germany, 1998, edited by L. Niklasson, M. Bodén, and

L. R. De Moor, http://www.esat.kuleuven.ac.be/sista/daisy,

T. Ziemke, pp. 675-680. 1997.

[26] [\Iotice that this value is much lower than the pairwise estimate[46] We are aware of the fact that the beat rate seen in Fig. 9 seems
1(8,,8) =4 shown in Fig. 3, which seems to contradict the much too high, suggesting that the ECG was indeed sampled
claim that this Ml is dominated by the dependence betweenthe  with =200 Hz. But the value of 500 Hz was confirmed by the
first two sources. This is explained by the fact tf(éﬁl,éz) is authors maintaining the UR[45]. Anyhow, our conclusions
estimated from much closer neighbgveorking in two dimen- are independent of the actual sampling rate.
sions only, and thus is able to resolve much finer details. [47] H. Kantz and T. Schreibefonlinear Time Series Analysis

[27] J.-H. Jiang and Y. Ozaki, Appl. Spectrosc. Re®7, 321 Cambridge Nonlinear Science Series No(Cambridge Uni-
(2002. versity Press, Cambridge, UK, 1997

[28] P. Geladi, Spectrochim. Acta, Part B3, 767 (2003. [48] E. Ott, Chaos in Dynamical Systenif€ambridge University

[29] A. de Juan and R. Tauler, Anal. Chim. Ac&00, 195(2003. Press, Cambridge, UK, 1993

[30] J. Chen and X. Z. Wang, J. Chem. Inf. Comput. S&l, 992 [49] D. S. Broomhead and G. P. King, PhysicadD, 217 (1986.
(2001). [50] A. Hyvérinen and P. Hoyer, Neural Comptit2, 1705(2000.

[31] J. Y. Ren, C. Q. Chang, P. C. W. Fung, J. G. Shen, and F. H. Y[51] A. K. Jain and R. C. DubesAlgorithms for Clustering Data
Chan, J. Magn. Resorl66, 82 (2004. (Prentice Hall, Englewood Cliffs, NJ, 1988

[32] E. Visser and T. W. Lee, Chemom. Intell. Lab. Sy%0, 147 [52] A.J. Belland T. J. Sejnowski, Neural Comput.1129(1995.
(2004). [53] L. Molgedey and H. G. Schuster, Phys. Rev. Let2, 3634

[33] W. Windig and J. Guilment, Anal. Chen63, 1425(1991). (1994).

[34] D. S. Bu and C. W. Brown, Appl. Spectrost4, 1214(2000. [54] K.-R. Mdller, P. Philips and A. Ziehe, in Proceedings of the

[35] E. Widjaja, C. Li, and M. Garland, Anal. Chen¥5, 4499 International Workshop on Independent Component Analysis
(2003. (ICA’99), Aussois, France, 1999, edited by J. F. Cardoso, Ch.

[36] NIST Mass Spec Data Center, S. E. Stein, diredtafrared Jutten, and Ph. Loubaton, pp. 87-92.

Spectrain NIST Chemistry WebBook, NIST Standard Refer- [55] When estimating the individual Mis on the right hand side, one
ence Database Number 69, edited by P. J. Linstrom and W. G.  should pay attention to the fact that the same neighbors are

Mallard, March, 2003(National Institute of Standards and used, i.e., one should not use the same valueinfeach term

Technology, Gaithersburg, MD, 2003  (http:// (see alsd26)).

webbook.nist.goy [56] C. L. Keppenne and M. Ghil, Int. J. Bifurcation Chaos Appl.
[37] The matrix elementgy; were uniformly chosen from the in- Sci. Eng. 3, 625(1993.

terval [0,1]. Thus they are not normalized and give only rela- [57] M. Ghil et al, Rev. Geophys40, 1003(2002.

tive concentrations, but this is irrelevant. [58] R. Vautard and M. Ghil, Physica 35, 395 (1989; 58, 95
[38] M. D. Plumbley and E. Oja, IEEE Trans. Neural Netbb, 66 (1992.

(2004). [59] T. Schreiber and D. T. Kaplan, Phys. Rev58, R4326(1996).

[39] In case of noisy and less smooth spectra, the derivatives migh60] M. Richter, T. Schreiber, and D. T. Kaplan, IEEE Trans.
be taken using more sophisticated approximations, e.g., A.  Biomed. Eng.45, 133(1998.
Savitzky and M. J. E. Golay, Anal. Chen36, 1627(1964). [61] http://www.fz-juelich.de/nic/cs/software/

066123-17



