27 research outputs found

    Clostridium difficile infection among veterans health administration patients

    Get PDF
    OBJECTIVETo report on the prevalence and incidence of Clostridium difficile infection (CDI) from 2009 to 2013 among Veterans Healthcare Administration patientsDESIGNA retrospective descriptive analysis of data extracted from a large electronic medical record (EMR) databaseSETTINGData were acquired from VHA healthcare records from 2009 to 2013 that included outpatient clinical visits, long-term care, and hospitalized care as well as pharmacy and laboratory information.RESULTSIn 2009, there were 10,207 CDI episodes, and in 2013, there were 12,143 CDI episodes, an increase of 19.0%. The overall CDI rate increased by 8.4% from 193 episodes per 100,000 patient years in 2009 to 209 episodes per 100,000 patient years in 2013. Of the CDI episodes identified in 2009, 58% were identified during a hospitalization, and 42% were identified in an outpatient setting. In 2013, 44% of the CDI episodes were identified in an outpatient setting.CONCLUSIONThis is one of the largest studies that has utilized timely EMR data to describe the current CDI epidemiology at the VHA. Despite an aging population with greater burden of comorbidity than the general US population, our data show that VHA CDI rates stabilized between 2011 and 2013 following increases likely attributable to the introduction of the more sensitive nucleic acid amplification tests (NAATs). The findings in this report will help establish an accurate benchmark against which both current and future VA CDI prevention initiatives can be measured.Infect. Control Hosp. Epidemiol. 2015;36(9):1038–1045</jats:sec

    Influence of Chaperone-Like Activity of Caseinomacropeptide on the Gelation Behaviour of Whey Proteins at pH 6.4 and 7.2

    Get PDF
    The effect of caseinomacropeptide (CMP) on the heat-induced denaturation and gelation of whey proteins (2.5–10%, w/v) at pH 6.4 and 7.2, at a whey protein:CMP ratio of 1:0.9 (w/w), was investigated using differential scanning calorimetry (DSC), oscillatory rheology (90 °C for 20 min) and confocal microscopy. Greater frequency-dependence in the presence of CMP suggested that the repulsive interactions between CMP and the whey proteins affected the network generated by the non-heated whey protein samples. At pH 6.4 or 7.2, CMP increased the temperature of denaturation of β-lactoglobulin by up to 3 °C and increased the gelation temperature by up to 7 °C. The inclusion of CMP strongly affected the structure of the heat-induced whey protein gels, resulting in a finer stranded structure at pH 6.4 and 7.2. The presence of CMP combined with a lower heating rate (2 °C/min) prevented the formation of a solid gel of whey proteins after heating for 20 min at 90 °C and at pH 7.2. These results show the potential of CMP for control of whey protein denaturation and gelation

    WSES guidelines for management of Clostridium difficile infection in surgical patients

    Get PDF
    In the last two decades there have been dramatic changes in the epidemiology of Clostridium difficile infection (CDI), with increases in incidence and severity of disease in many countries worldwide. The incidence of CDI has also increased in surgical patients. Optimization of management of C difficile, has therefore become increasingly urgent. An international multidisciplinary panel of experts prepared evidenced-based World Society of Emergency Surgery (WSES) guidelines for management of CDI in surgical patients.Peer reviewe

    WSES guidelines for management of Clostridium difficile infection in surgical patients

    Full text link

    Saccharomyces boulardii

    No full text

    Physiology and bioenergetics of [NiFe]-hydrogenase 2-catalyzed H<sub>2</sub>-consuming and H<sub>2</sub>-producing reactions in <i>Escherichia coli</i>

    No full text
    Escherichia coli uptake hydrogenase 2 (Hyd-2) catalyzes the reversible oxidation of H(2) to protons and electrons. Hyd-2 synthesis is strongly upregulated during growth on glycerol or on glycerol-fumarate. Membrane-associated Hyd-2 is an unusual heterotetrameric [NiFe]-hydrogenase that lacks a typical cytochrome b membrane anchor subunit, which transfers electrons to the quinone pool. Instead, Hyd-2 has an additional electron transfer subunit, termed HybA, with four predicted iron-sulfur clusters. Here, we examined the physiological role of the HybA subunit. During respiratory growth with glycerol and fumarate, Hyd-2 used menaquinone/demethylmenaquinone (MQ/DMQ) to couple hydrogen oxidation to fumarate reduction. HybA was essential for electron transfer from Hyd-2 to MQ/DMQ. H(2) evolution catalyzed by Hyd-2 during fermentation of glycerol in the presence of Casamino Acids or in a fumarate reductase-negative strain growing with glycerol-fumarate was also shown to be dependent on both HybA and MQ/DMQ. The uncoupler carbonyl cyanide m-chlorophenylhydrazone (CCCP) inhibited Hyd-2-dependent H(2) evolution from glycerol, indicating the requirement for a proton gradient. In contrast, CCCP failed to inhibit H(2)-coupled fumarate reduction. Although a Hyd-2 enzyme lacking HybA could not catalyze Hyd-2-dependent H(2) oxidation or H(2) evolution in whole cells, reversible H(2)-dependent reduction of viologen dyes still occurred. Finally, hydrogen-dependent dye reduction by Hyd-2 was reversibly inhibited in extracts derived from cells grown in H(2) evolution mode. Our findings suggest that Hyd-2 switches between H(2)-consuming and H(2)-producing modes in response to the redox status of the quinone pool. Hyd-2-dependent H(2) evolution from glycerol requires reverse electron transport
    corecore