74 research outputs found

    Strategies for cost-effective remediation of widespread oil-contaminated soils in Kuwait, an environmental legacy of the first Gulf War

    Get PDF
    The Kuwaiti oil fire during the first Gulf War resulted in the formation of approximately 300 “oil lakes” of varying sizes that covered over 110 km2 of the desert land. This threatens the fragile desert ecosystems and human health. Following the award of over US$2 billion to the State of Kuwait by the United Nations, large-scale remediation of the oil-contaminated soils has now been on the agenda. However, how to implement the remediation program in a cost-effective way represents a major challenge. In this study, cost-effective remediation strategies were developed based on field and laboratory investigations in a typical oil lake area. Overall, most of the lighter petroleum hydrocarbons (PHCs) were lost due to evaporation. Long-chain aliphatic PHCs dominated the PHCs in the investigated oil lake area. This has implications for developing remediation strategies. Toxicity assessment results showed that the majority of soils pose a low environmental risk with a hazard index <1. Therefore, intensive treatment of these PHCs may not be necessary for these soils. Although active treatment methods are needed to remove the contaminants as soon as practical for the relatively small areas of high contamination, more cost-effective passive methods should be considered to minimize the remedial costs for the larger area of the non-hotspot areas. Given the extremely low risk in terms of groundwater contamination by the contaminated soils, it may not be necessary to remove the soils from the contaminated sites. A low-cost capping method should be sufficient to minimize human exposure to the PHC-contaminated soils

    Biochar immobilizes soil-borne arsenic but not cationic metals in the presence of low-molecular-weight organic acids

    Get PDF
    A batch experiment was conducted to examine the effects of biochar on the behaviour of soil-borne arsenic and metals that were mobilized by three low-molecular-weight organic acids. In the presence of citric acid, oxalic acid and malic acid at a molar concentration of 0.01 M, the surface of biochar was protonated, which disfavours adsorption of the cationic metals released from the soil by organic acid-driven mobilization. In contrast, the oxyanionic As species were re-immobilized by the protonated biochar effectively. Biochar could also immobilize oxyanionic Cr species but not cationic Cr species. The addition of biochar increased the level of metals in the solution due to the release of the biochar-borne metals under attack by LMWOAs via cation exchange. Biochar could also have the potential to enhance reductive dissolution of iron and manganese oxides in the soil, leading to enhanced release of trace elements bound to these oxides. The findings obtained from this study have implications for evaluating the role of biochar in immobilizing trace elements in rhizosphere. Adsorption of cationic heavy metals on biochar in the presence of LMWOAs is unlikely to be a mechanism responsible for the impeded uptake of heavy metals by plants growing in heavy metal-contaminated soils

    Fenton reagent reduces the level of arsenic in paddy rice grain

    Get PDF
    Hydroponic and pot experiments were conducted to examine the effects of Fenton reagent on paddy rice plant growing in arsenic-contaminated soils. Fenton reagent significantly reduced arsenic phytotoxicity, uptake by the plants and accumulation in rice grain. This is attributed to oxidation of As3+ to As5+ by hydroxyl radicals and immobilization of arsenate by reacting with precipitating Fe3+ to form practically insoluble compounds. Although this process enhanced the formation of Fe-enriched coatings on root surface, it appears that root plaque had limited effects on inhibiting As uptake since most of the young roots were not covered by iron plaque. It is more likely that As immobilization in the bulk soils play a major role in reducing As flux towards rhizosphere. The findings have implications for understanding As behavior in paddy field receiving rainwater-borne hydrogen peroxide and developing cost-effective techniques for reducing As level in rice grain produced from As-contaminated soil

    Potential effects of rainwater-borne H2O2 on competitive degradation of herbicides and in the presence of humic acid

    Get PDF
    In a previous piece of work, we reported some preliminary experimental results showing that hydrogen peroxide at a concentration range frequently encountered in rainwater could lead to degradation of three common herbicides (diuron, butachlor and glyphosate). However, the work was limited to the observation on the effects of Fenton process on the individual herbicides. In field conditions, different types of herbicides along with other organic molecules may occur concurrently. It is unclear how different herbicides and various organic molecules compete for the available hydroxyl radical. In this study, further microcosm experiments were conducted to observe the changes in the herbicides in the scenarios where multiple herbicides or humic acid are present. The results show that humic acid impeded hydroxyl radical-driven degradation of the diuron and butachlor. However, humic acid had no significant effects on reducing glyphosate removal rate. Glyphosate could compete strongly with the humic acid for the available hydroxyl radical in the reaction systems. The reactivity of glyphosate with hydroxyl radical was much higher than those of diuron and butachlor due possibly to its relatively simpler chemical structure, as compared to either diuron or butachlor. Butachlor degradation was much weaker in the combined diuron and butachlor system than in the combined glyphosate and butachlor system. In the glyphosate-butachlor system, the opposite was observed. The findings have moved another step forward to understanding the potential role of rainwater-borne H2O2 in degrading herbicides in open water environments

    Particle size effects on bioaccessible amounts of ingestible soil-borne toxic elements

    Get PDF
    The unified BARGE method was used to examine the effects of soil particle size on the bioaccessible amounts of potentially toxic elements in multi-contaminated soils from a closed landfill site. The results show that bioaccessible As, Al, Cd, Cr, Cu, Mn, Ni, Pb and Zn increased with decreasing soil particle size and the <0.002 mm soil fraction contained much greater amounts of the bioaccessible elements, as compared to other soil fractions (0.002-0.063 mm, 0.063-0.125 mm, and 0.125-0.250 mm). As, Al and Cr had much lower bioaccessibility, as compared to the six cationic heavy metals. In contrast with other elements, As bioaccessibility tended to be higher in the gastrointestinal phase than in the gastric phase. There was a significant soil particle size effect on bioaccessibility of As and Al in the gastrointestinal phase: As bioaccessibility decreased with decreasing particle size, and the finer soil fractions tended to have a higher Al bioaccessibility, as compared to the coarser soil fractions. The research findings prompt the need for further division of soil particle size fractions in order to more accurately assess the bioaccessible amounts of soil-borne potentially toxic elements in contaminated lands

    Climate change adaptation in acid sulfate landscapes

    Get PDF
    Oxidation of sulfide minerals produces sulfuric acid and consequently creates Acid Sulfate Landscapes (ASLs), which represent one of the most degraded types of land-surface environments. Although acid sulfate-producing weathering is a naturally occurring process, it is markedly facilitated by human intervention. Mining is by far the dominant anthropogenic cause for the creation of inland acid sulfate footprints while land reclamation in coastal lowlands is the driver for the formation of coastal ASLs. The projected climate change highlights the possibility of an increase in the frequency and severity of extreme weather events such as droughts and heavy rains, which is likely to accelerate the acid generation in some circumstances and increase the frequency and magnitude of acid discharge. Sea level rise as a result of global warming will cause additional problems with the coastal ASLs. This is a review article. The following aspects are covered: (a) the overriding biogeochemical processes leading to acid sulfate producing weathering, (b) a brief introduction to the inland acid sulfate landscapes, (c) a brief introduction to the coastal acid sulfate landscapes, (d) the likely impacts of climate change on ASLs and (e) the possible measures to combat climate change-induced environmental degradation in the identified key acid sulfate footprints. The projected climate change is like to significantly affect the acid sulfate landscapes in different ways. Appropriate management strategies and cost-effective technologies need to be developed in order to minimize the climate change-induced ecological degradation

    Comparison of copper scavenging capacity between two different red mud types

    Get PDF
    A batch experiment was conducted to compare the Cu scavenging capacity between two different red mud types: the first one was a highly basic red mud derived from a combined sintering and Bayer process, and the second one was a seawater-neutralized red mud derived from the Bayer process. The first red mud contained substantial amounts of CaCO3, which, in combination with the high OH− activity, favored the immobilization of water-borne Cu through massive formation of atacamite. In comparison, the seawater-neutralized red mud had a lower pH and was dominated by boehmite, which was likely to play a significant role in Cu adsorption. Overall, it appears that Cu was more tightly retained by the CaCO3-dominated red mud than the boehmite-dominated red mud. It is concluded that the heterogeneity of red mud has marked influences on its capacity to immobilize water-borne Cu and maintain the long-term stability of the immobilized Cu species. The research findings obtained from this study have implications for the development of Cu immobilization technology by using appropriate waste materials generated from the aluminium industry

    Effects of different fertilizers on soil-borne DDTs dynamics and its impacts on DDTs uptake by Ipomoea Aquatica

    Get PDF
    A pot experiment was conducted to examine the effects of various fertilizers on the dynamics of soil-borne DDTs and their subsequent impacts on DDTs uptake by a test plant. The results show that there was a significantly lower soil residual DDTs concentration in the iron-rich fertilizer-treated soil than in other fertilizer-treated soils. However, all the non-iron-rich fertilizers showed no significant effect on the reduction of soil DDTs on the last day of the experiment, as compared to the control. There was a close relationship between the soil residual DDTs and plant tissue DDTs. This suggests that the uptake rate of DDTs by the plant was dependent on the concentration of soil-borne DDTs. Application of iron-rich fertilizer enhanced the degradation of the soil DDTs and subsequently reduced the uptake of DDTs by the test plant. The findings obtained from this study have implications for remediation of DDTs-polluted soil

    Arsenate immobilization associated with microbial oxidation of ferrous ion in complex acid sulfate water

    No full text
    Chemical, XRD, SEM, RS, FTIR and XPS techniques were used to investigate arsenate immobilization associated with microbial Fe2+ oxidation in a complex acid sulfate water system consisting of a modified 9 K solution (pH 2.0) plus As, Cu, Cd, Pb, Zn and Mn. At a 1:12.5:70 molar ratio of As:Fe:S, schweretmannite formation was impeded. This was in contrast with the predominant presence of schwertmannite when the heavy metals were absent, suggesting that a schwertmannite binding model is not valid for explaining arsenate immobilization in the complex system. In this study, arsenate was initially immobilized through co-precipitation with non-Fe metals and phosphate. Subsequently when sufficient Fe3+ was produced from Fe2+ oxidation, formation of a mixed iron, arsenate and phosphate phase predominated. The last stage involved surface complexation of arsenate species. Pb appeared to play an insignificant role in arsenate immobilization due to its strong affinity for sulfate to form anglesite. Phosphate strongly competed with arsenate for the available binding sites. However, As exhibited an increased capacity to compete with P and S for available binding sites from the co-precipitation to surface complexation stage. Adsorbed As tended to be in HAsO4 2− form. The scavenged arsenate species was relatively stable after 2464-h aging
    corecore