194 research outputs found

    B584: Controlling Infectious Bronchitis in Maine Chickens

    Get PDF
    This publication reports on the investigations of some of the respiratory disease problems of domestic chickens and steps taken to improve the vaccines created to prevent the diseases.https://digitalcommons.library.umaine.edu/aes_bulletin/1030/thumbnail.jp

    CheXpert: A Large Chest Radiograph Dataset with Uncertainty Labels and Expert Comparison

    Full text link
    Large, labeled datasets have driven deep learning methods to achieve expert-level performance on a variety of medical imaging tasks. We present CheXpert, a large dataset that contains 224,316 chest radiographs of 65,240 patients. We design a labeler to automatically detect the presence of 14 observations in radiology reports, capturing uncertainties inherent in radiograph interpretation. We investigate different approaches to using the uncertainty labels for training convolutional neural networks that output the probability of these observations given the available frontal and lateral radiographs. On a validation set of 200 chest radiographic studies which were manually annotated by 3 board-certified radiologists, we find that different uncertainty approaches are useful for different pathologies. We then evaluate our best model on a test set composed of 500 chest radiographic studies annotated by a consensus of 5 board-certified radiologists, and compare the performance of our model to that of 3 additional radiologists in the detection of 5 selected pathologies. On Cardiomegaly, Edema, and Pleural Effusion, the model ROC and PR curves lie above all 3 radiologist operating points. We release the dataset to the public as a standard benchmark to evaluate performance of chest radiograph interpretation models. The dataset is freely available at https://stanfordmlgroup.github.io/competitions/chexpert .Comment: Published in AAAI 201

    Association Between COVID-19 and Mortality in Hip Fracture Surgery in the National COVID Cohort Collaborative (N3C): A Retrospective Cohort Study

    Get PDF
    BACKGROUND: This study investigated the outcomes of coronavirus disease (COVID-19)-positive patients undergoing hip fracture surgery using a national database. METHODS: This is a retrospective cohort study comparing hip fracture surgery outcomes between COVID-19 positive and negative matched cohorts from 46 sites in the United States. Patients aged 65 and older with hip fracture surgery between March 15 and December 31, 2020, were included. The main outcomes were 30-day all-cause mortality and all-cause mortality. RESULTS: In this national study that included 3303 adults with hip fracture surgery, the 30-day mortality was 14.6% with COVID-19-positive versus 3.8% in COVID-19-negative, a notable difference. The all-cause mortality for hip fracture surgery was 27.0% in the COVID-19-positive group during the study period. DICUSSION: We found higher incidence of all-cause mortality in patients with versus without diagnosis of COVID-19 after undergoing hip fracture surgery. The mortality in hip fracture surgery in this national analysis was lower than other local and regional reports. The medical community can use this information to guide the management of hip fracture patients with a diagnosis of COVID-19

    An analytical approach to characterize morbidity profile dissimilarity between distinct cohorts using electronic medical records

    Get PDF
    AbstractWe describe a two-stage analytical approach for characterizing morbidity profile dissimilarity among patient cohorts using electronic medical records. We capture morbidities using the International Statistical Classification of Diseases and Related Health Problems (ICD-9) codes. In the first stage of the approach separate logistic regression analyses for ICD-9 sections (e.g., “hypertensive disease” or “appendicitis”) are conducted, and the odds ratios that describe adjusted differences in prevalence between two cohorts are displayed graphically. In the second stage, the results from ICD-9 section analyses are combined into a general morbidity dissimilarity index (MDI). For illustration, we examine nine cohorts of patients representing six phenotypes (or controls) derived from five institutions, each a participant in the electronic MEdical REcords and GEnomics (eMERGE) network. The phenotypes studied include type II diabetes and type II diabetes controls, peripheral arterial disease and peripheral arterial disease controls, normal cardiac conduction as measured by electrocardiography, and senile cataracts

    Designing informative warning signals: Effects of indicator type, modality, and task demand on recognition speed and accuracy

    Get PDF
    An experiment investigated the assumption that natural indicators which exploit existing learned associations between a signal and an event make more effective warnings than previously unlearned symbolic indicators. Signal modality (visual, auditory) and task demand (low, high) were also manipulated. Warning effectiveness was indexed by accuracy and reaction time (RT) recorded during training and dual task test phases. Thirty-six participants were trained to recognize 4 natural and 4 symbolic indicators, either visual or auditory, paired with critical incidents from an aviation context. As hypothesized, accuracy was greater and RT was faster in response to natural indicators during the training phase. This pattern of responding was upheld in test phase conditions with respect to accuracy but observed in RT only in test phase conditions involving high demand and the auditory modality. Using the experiment as a specific example, we argue for the importance of considering the cognitive contribution of the user (viz., prior learned associations) in the warning design process. Drawing on semiotics and cognitive psychology, we highlight the indexical nature of so-called auditory icons or natural indicators and argue that the cogniser is an indispensable element in the tripartite nature of signification

    A Vulnerability Assessment of Fish and Invertebrates to Climate Change on the Northeast U.S. Continental Shelf

    Get PDF
    Climate change and decadal variability are impacting marine fish and invertebrate species worldwide and these impacts will continue for the foreseeable future. Quantitative approaches have been developed to examine climate impacts on productivity, abundance, and distribution of various marine fish and invertebrate species. However, it is difficult to apply these approaches to large numbers of species owing to the lack of mechanistic understanding sufficient for quantitative analyses, as well as the lack of scientific infrastructure to support these more detailed studies. Vulnerability assessments provide a framework for evaluating climate impacts over a broad range of species with existing information. These methods combine the exposure of a species to a stressor (climate change and decadal variability) and the sensitivity of species to the stressor. These two components are then combined to estimate an overall vulnerability. Quantitative data are used when available, but qualitative information and expert opinion are used when quantitative data is lacking. Here we conduct a climate vulnerability assessment on 82 fish and invertebrate species in the Northeast U.S. Shelf including exploited, forage, and protected species. We define climate vulnerability as the extent to which abundance or productivity of a species in the region could be impacted by climate change and decadal variability. We find that the overall climate vulnerability is high to very high for approximately half the species assessed; diadromous and benthic invertebrate species exhibit the greatest vulnerability. In addition, the majority of species included in the assessment have a high potential for a change in distribution in response to projected changes in climate. Negative effects of climate change are expected for approximately half of the species assessed, but some species are expected to be positively affected (e.g., increase in productivity or move into the region). These results will inform research and management activities related to understanding and adapting marine fisheries management and conservation to climate change and decadal variability

    Semantic integration of clinical laboratory tests from electronic health records for deep phenotyping and biomarker discovery.

    Get PDF
    Electronic Health Record (EHR) systems typically define laboratory test results using the Laboratory Observation Identifier Names and Codes (LOINC) and can transmit them using Fast Healthcare Interoperability Resource (FHIR) standards. LOINC has not yet been semantically integrated with computational resources for phenotype analysis. Here, we provide a method for mapping LOINC-encoded laboratory test results transmitted in FHIR standards to Human Phenotype Ontology (HPO) terms. We annotated the medical implications of 2923 commonly used laboratory tests with HPO terms. Using these annotations, our software assesses laboratory test results and converts each result into an HPO term. We validated our approach with EHR data from 15,681 patients with respiratory complaints and identified known biomarkers for asthma. Finally, we provide a freely available SMART on FHIR application that can be used within EHR systems. Our approach allows readily available laboratory tests in EHR to be reused for deep phenotyping and exploits the hierarchical structure of HPO to integrate distinct tests that have comparable medical interpretations for association studies

    A Simple Standard for Sharing Ontological Mappings (SSSOM).

    Get PDF
    Despite progress in the development of standards for describing and exchanging scientific information, the lack of easy-to-use standards for mapping between different representations of the same or similar objects in different databases poses a major impediment to data integration and interoperability. Mappings often lack the metadata needed to be correctly interpreted and applied. For example, are two terms equivalent or merely related? Are they narrow or broad matches? Or are they associated in some other way? Such relationships between the mapped terms are often not documented, which leads to incorrect assumptions and makes them hard to use in scenarios that require a high degree of precision (such as diagnostics or risk prediction). Furthermore, the lack of descriptions of how mappings were done makes it hard to combine and reconcile mappings, particularly curated and automated ones. We have developed the Simple Standard for Sharing Ontological Mappings (SSSOM) which addresses these problems by: (i) Introducing a machine-readable and extensible vocabulary to describe metadata that makes imprecision, inaccuracy and incompleteness in mappings explicit. (ii) Defining an easy-to-use simple table-based format that can be integrated into existing data science pipelines without the need to parse or query ontologies, and that integrates seamlessly with Linked Data principles. (iii) Implementing open and community-driven collaborative workflows that are designed to evolve the standard continuously to address changing requirements and mapping practices. (iv) Providing reference tools and software libraries for working with the standard. In this paper, we present the SSSOM standard, describe several use cases in detail and survey some of the existing work on standardizing the exchange of mappings, with the goal of making mappings Findable, Accessible, Interoperable and Reusable (FAIR). The SSSOM specification can be found at http://w3id.org/sssom/spec. Database URL: http://w3id.org/sssom/spec

    The Monarch Initiative in 2024: an analytic platform integrating phenotypes, genes and diseases across species.

    Get PDF
    Bridging the gap between genetic variations, environmental determinants, and phenotypic outcomes is critical for supporting clinical diagnosis and understanding mechanisms of diseases. It requires integrating open data at a global scale. The Monarch Initiative advances these goals by developing open ontologies, semantic data models, and knowledge graphs for translational research. The Monarch App is an integrated platform combining data about genes, phenotypes, and diseases across species. Monarch\u27s APIs enable access to carefully curated datasets and advanced analysis tools that support the understanding and diagnosis of disease for diverse applications such as variant prioritization, deep phenotyping, and patient profile-matching. We have migrated our system into a scalable, cloud-based infrastructure; simplified Monarch\u27s data ingestion and knowledge graph integration systems; enhanced data mapping and integration standards; and developed a new user interface with novel search and graph navigation features. Furthermore, we advanced Monarch\u27s analytic tools by developing a customized plugin for OpenAI\u27s ChatGPT to increase the reliability of its responses about phenotypic data, allowing us to interrogate the knowledge in the Monarch graph using state-of-the-art Large Language Models. The resources of the Monarch Initiative can be found at monarchinitiative.org and its corresponding code repository at github.com/monarch-initiative/monarch-app
    • …
    corecore