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a b s t r a c t

We describe a two-stage analytical approach for characterizing morbidity profile dissimilarity among
patient cohorts using electronic medical records. We capture morbidities using the International Statis-
tical Classification of Diseases and Related Health Problems (ICD-9) codes. In the first stage of the
approach separate logistic regression analyses for ICD-9 sections (e.g., ‘‘hypertensive disease” or ‘‘appen-
dicitis”) are conducted, and the odds ratios that describe adjusted differences in prevalence between two
cohorts are displayed graphically. In the second stage, the results from ICD-9 section analyses are com-
bined into a general morbidity dissimilarity index (MDI). For illustration, we examine nine cohorts of
patients representing six phenotypes (or controls) derived from five institutions, each a participant in
the electronic MEdical REcords and GEnomics (eMERGE) network. The phenotypes studied include type
II diabetes and type II diabetes controls, peripheral arterial disease and peripheral arterial disease con-
trols, normal cardiac conduction as measured by electrocardiography, and senile cataracts.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Electronic medical records (EMR) have been shown to offer the
potential to improve the quality of clinical care, reduce costs, and
improve guideline adherence. While researchers have also used
EMRs for clinical research [1,2], for medical outcomes research
[3], to categorize rare findings [4], and to identify patients with
various conditions and assess eligibility for clinical trials [5,6],
there has been little exploration of using DNA biobanks linked to
EMRs for genomic studies. Given the powerful potential for sub-
stantial cost and time efficiency [7], there is increasing interest in
EMRs as a potential way to identify cohorts of patients and associ-
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ated DNA samples to discover genetic associations for common
complex diseases and the genetic influence on response to therapy
through genome-wide association studies (GWAS) [8].

Pooling data from multiple EMRs or sites can improve power
and generalizability, especially when investigating a less prevalent
disease phenotype. However, it introduces analytical consider-
ations related to cohort heterogeneity. If genotype-phenotype
associations are highly variable across the sites, caution should
be applied when combining results since a single summary mea-
sure of the overall association may mask important site-by-geno-
type interactions. When a single association measure is of
interest, meta-analytic approaches such as the random effects
model of DerSimonian and Laird [9] and its extensions can be ap-
plied. In this model, the overall association (e.g., a log odds ratio),
h, is a weighted average of the site-specific associations, hi, where
i = 1,2,. . .,I denotes site. The variance of h, VarðhÞ, is given by
ð
PI

i¼11=ðr2
i þ s2ÞÞ�1 where r2

i � VariðhiÞ is the variance at site i
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and s2 is a measure of variability among hi across the sites. The va-
lue s2 can be thought of as a heterogeneity penalty that increases
VarðhÞ and can lead to diminished power to detect associations. If
costs associated with ascertaining genotypes and/or phenotypes
are high, being able to anticipate analytical challenges and/or loss
of power due to cohort heterogeneity is crucial. Towards that end,
we propose a two-stage analysis protocol that uses readily avail-
able patient information to proactively examine the extent to
which selected cohorts are dissimilar over a (broad or narrow)
range of morbidities.

Due to their wide availability, standard format, and relatively
consistent utilization, we capture morbidities with the Interna-
tional Statistical Classification of Diseases and Related Health Prob-
lems codes (ICD-9). However, the proposed approach is general
and can be applied to other morbidity definitions. At the first stage,
the protocol estimates demographic adjusted measures of cohort
morbidity differences across individual ICD-9 sections using logis-
tic regression and displays odds ratios and associated 95% confi-
dence intervals graphically. At the second stage, the section-
specific differences estimated at the first stage are combined into
a single, general measure of cohort dissimilarity. We call this the
‘‘morbidity dissimilarity index” (MDI), and it can be thought of as
a distance between the morbidity profiles of two cohorts. Results
from the two stages of analyses are complementary. Stage 2 results
permit broad summarization of dissimilarity over a range of mor-
bidities, and stage 1 results can be used to examine observed dif-
ferences at a finer level.
2. Background

2.1. Comorbidity summarization

Comorbidity information readily available in EMRs can be a
valuable resource for assessing cohort dissimilarity. Individual le-
vel indices that can be derived from EMR such as the Charlson
comorbidity index [10], Elixhauser index [11,12], APACHE score
[13], and functional comorbidity index [14] capture health out-
comes related risk for a given a set of features. While these mea-
sures can be used to compare individuals’ risks, they do not
specifically measure similarity. For example two individuals with
equal risk scores may differ on the items that comprise the score.
An information theoretic scoring approach has been proposed
[15] for measuring individual case similarities based on patient-
specific features. From this, one could calculate a measure of co-
hort similarity with, say, an intra-class correlation coefficient that
captures the relative contributions of between- and within-cohort
variation in the scores. However, by first calculating patient-level
scores and then summarizing the distribution of these scores, we
lose all information about the relatedness or correlation among
the components of the score. As we will show, proper acknowledg-
ment of morbidity correlations is crucial for capturing cohort mor-
bidity similarity. Principal Components Analysis (PCA) is
commonly used to identify population (genetic) structure [16–
19] and can therefore be used to capture cohort morbidity profile
dissimilarity like we do. That is, one could use PCA to reduce the
dimensionality of the morbidity profile into, say, a single principal
component. A distance metric between the cohorts could then be
derived from the morbidity-specific coefficients. However, the
morbidity-specific coefficients have conditional interpretations,
and therefore in the presence of correlated morbidities marginal
differences in prevalence between cohorts will be masked. In our
two-stage approach, the marginal differences are of interest and
are captured and examined explicitly. They are then combined into
a single measure of dissimilarity while properly accounting for
morbidity correlations.
2.2. Electronic MEdical Records and GEnomics (eMERGE) Network

This work is motivated by ongoing GWAS studies performed as
part of the electronic MEdical Records and GEnomics (eMERGE)
network, which seeks to use EMR-linked DNA biobanks as their
source of cases and controls. The eMERGE network is a consortium
of five medical centers, Group Health Cooperative (GHC, Seattle
WA), Marshfield Clinic (MAR, Marshfield, WI), Mayo Clinic (MAY,
Rochester, MN), Northwestern University (NU, Chicago, IL), and
Vanderbilt University (VU, Nashville, TN). Each eMERGE member
has established a DNA biobank linked to an EMR for clinical data
[20]. The consortium is funded by the National Human Genome Re-
search Institute with additional funding by the National Institute of
General Medical Sciences to develop the necessary tools and tech-
niques to perform GWAS in participants with phenotypes and
environmental exposures derived from EMRs.

The eMERGE sites are investigating seven primary disease phe-
notypes by GWAS, and a growing number of secondary phenotypes
that seek to reuse GWAS data derived from the primary pheno-
types. Each site has created and refined electronic phenotype selec-
tion algorithms to identify cases and controls using information
derived from the EMR. The algorithms use combinations of admin-
istrative billing codes, laboratory and medication data, and string
queries and natural language processing techniques applied to
unstructured, free-text clinical narratives. Given the typically small
effect size of individual SNP-phenotype associations, thousands of
cases and controls are typically required to ensure adequate statis-
tical power for successful GWAS [21]. Thus, several eMERGE phe-
notypes require pooling cases and controls across the network.
3. Methods

3.1. Populations examined

Across the eMERGE network, selection algorithms were devel-
oped for type 2 diabetes (VU, NU), cardiac conduction (VU, NU), se-
nile cataracts (MAR, GHC), senile dementia (MAR, GHC), and
peripheral arterial disease (MAY). Each phenotype selection algo-
rithm was iteratively developed and evaluated by clinician reviewers
or chart abstractors at each site until they performed well enough to
obtain a positive predictive value greater than or equal to 95%. The
details of these algorithms are posted on http://gwas.net; their
implementation and rationale will be presented in subsequent pub-
lications. Because EMR systems and structures differ across sites
within the eMERGE network, the algorithms implemented at multi-
ple sites were adapted to accommodate each local environment.

As an example for our analysis protocol, we examined nine site-
phenotype cohorts defined by these algorithms: VU type II diabetes
(VU-T2D), VU type II diabetes controls (VU-CON), VU patients with
normal cardiac conduction as measured by the QRS duration (VU-
QRS), NU type II diabetes (NU-T2D), NU type II diabetes controls
(NU-CON), GHC senile cataracts (GHC-CAT), MAR senile cataracts
(MAR-CAT), MAY peripheral arterial disease (MAY-PAD), and
MAY peripheral arterial disease controls (MAY-CON).
3.2. Selection of ICD-9 billing codes for analysis

While billing codes are imperfect measures of disease status,
they are useful for research involving EMR because they cover
the broad range of diseases and diagnoses, they are commonly
used in large scale research to define populations, they are utilized
consistently across sites, and they are easily extracted from most
EMR systems. Current Procedural Technology (CPT) or ICD-9 proce-
dural codes were not considered because they are dependent on
the procedure being performed at the hospital of interest, and
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the receipt of a procedure is influenced by external factors (e.g.,
insurance, patient preference, and life expectancy), making them
less useful in understanding disease status for many phenotypes.
NLP approaches were not applied because these capabilities were
not available to all sites in the eMERGE network.

All available inpatient and outpatient ICD-9 codes were selected
for each subject and compared against a list of available ICD-9
codes derived from the Unified Medical Language System (UMLS),
version 2009AA [22]. Invalid ICD-9 codes, E codes (external causes
of injury) V codes (screening codes and other supplementary fac-
tors influencing health), procedure codes (i.e., 2-digit ICD9 codes),
and signs and symptoms (780–799) were excluded from analyses.

3.3. Data preparation

Adequate EMR data were available for differing lengths of time
across eMERGE network sites. For consistency of comparison, the
study was limited to the years 2001 to 2007. Five-digit ICD-9 codes
were available on all patients, however, coding at this level is
highly idiosyncratic, thereby precluding meaningful comparative
analyses of the cohorts. On the other hand, regression analyses
on codes aggregated to the level of ICD-9 chapters (e.g., ‘‘Diseases
of the digestive system”, n = 16) yield coarse and insensitive char-
acterizations of patient co-morbidity profiles. Therefore, to identify
co-morbidities, we use ICD-9 categories (3-digit codes, n = 904)
which we believe represent a level of coding that avoids the major
pitfalls of five-digit codes while maintaining sufficient detail to al-
low meaningful comparisons. For a category code to be considered
present in an individual, it must have been observed on more than
one occasion. Our rationale for this cut off was (1) it favors chronic
conditions over temporary acute conditions, and (2) it reduces po-
tential for noise induced by singular coding errors, as has been
found for some chronic conditions in prior ICD-9 analyses
[23,24]. While some real co-morbidities might be missed, the ap-
proach provides more confidence that the ones observed were in-
deed true positives. Section (e.g., ‘‘Noninfectious enteritis and
colitis”, n = 110) and chapter level co-morbidities were considered
to be present if at least one category code underneath them in the
ICD-9 taxonomy was present. We only considered adult patients
(age P18 years) who were observed for at least three years.

3.4. Analysis strategy

Analyses of ICD-9 categories were considered; however, we
found that many important ones did not provide sufficient counts
to permit analyses. We base analyses on the 66 of 110 ICD-9 sec-
tions that were observed in five percent of patients in at least
one cohort and in one-tenth of a percent of patients in all cohorts.
Had we not imposed the ‘observed category codes twice’ rule, our
analyses would have been based on 74 ICD-9 sections.

Our analysis protocol involves two stages. In the first stage, we
use logistic regression to capture the adjusted log odds ratio of
observing each ICD-9 section between cohorts, and in the second
stage we summarize section-specific results within and across
ICD-9 chapters to ascertain chapter-specific measures and a single
overall measure of cohort dissimilarity.

Stage 1: For each ICD-9 section s in 1, 2, . . . S, (S = 66 in this anal-
ysis), we fit a logistic regression model that included, as predictors,
the cohort identification variable (i.e., MAY-PAD, NU-T2D, etc.) and
covariates: gender, race (white, black, other, and unknown), age,
and length of patient follow-up. The demographic covariate adjust-
ments were crucial since multi-site studies include these covari-
ates in their statistical analysis models, and our objective is to
characterize cohort morbidity dissimilarity beyond what common
adjustment covariates could explain. To reduce re-identification
risk, birthdays were truncated to the birth years, and birth years
were truncated at 1928. For the sake of modeling, age was repre-
sented with two variables: an indicator variable for being born
prior to 1928 and then a continuous age variable for those born
in or after 1928. The latter age variable and the length of follow-
up variable were fit with flexible restricted cubic spline functions
with six degrees of freedom [25]. Linear combinations of estimated
regression parameters and variances were used to capture differ-
ences in the log odds of ICD-9 sections between cohort pairs
(e.g., GHC-CAT and MAR-CAT), and the associated odds ratios and
confidence intervals were displayed graphically. Because ICD-9
sections were modeled individually, the covariance matrix re-
quired for stage 2 was estimated using a stratified bootstrap ap-
proach [26]. Specifically, at each of 1500 replicates, a bootstrap
sample was ascertained for each site separately, section-specific
models were fitted, and parameter estimates were saved for all
section-specific models. The covariance matrix was estimated
across bootstrap replications [26].

Stage 2: In stage 2, ICD-9 section-specific parameter and covari-
ance estimates from Stage 1 were combined to obtain a measure of
cohort dissimilarity. The measure can be described as a rescaled
Mahalanobis Distance. Let b̂ ¼ ðb̂1; b̂2; :::; b̂SÞt be the vector of esti-
mated section-specific differences in the log odds (i.e., the log odds
ratio) for two populations estimated at stage 1, and V̂ � V̂ðb̂Þ be the
estimated variance–covariance matrix. For ease of exposition, we
remove ^ from our notation. We define the morbidity dissimilarity
index (MDI) with,

MDI ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
btWb

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXS

s¼1

XS

r¼1

brbsWr;s

vuut
where, W ¼ kV�1, V�1 is the inverse of the variance–covariance
matrix V and k ¼ 1=trðV�1Þ is the inverse of the trace (sum of the
diagonal elements) of V�1. The MDI differs from a Mahalonobis dis-
tance by the coefficient k, which serves to rescale the measure so it
is independent of the magnitude of section-specific variances, and
therefore of sample size. Since estimated variances decrease with
sample size, Mahalanobis distance necessarily increases with sam-
ple size. So, if the goal is classification, the Mahalanobis distance is
appropriate; however, our interest is in a simple and interpretable
measure of cohort dissimilarity.

When all variances are equal and in the absence of correlation
among parameter estimates, the MDI is equal to the Euclidean dis-
tance between ðb1; b2; :::; bSÞ and the origin (0, 0, . . . 0) divided by
the square root of S. The MDI is on the same scale as the compo-
nents of b and therefore, its value has a meaningful interpretation.
In contrast, to interpret the Euclidean distance we must know the
dimension of b. For example, consider the scenario where S = 10
and b ¼ ð1;1; :::;1Þ. It is easy to show that the MDI is equal to 1
thereby providing an insightful measure of how large components
of b are; however, the Euclidean distance is approximately 3.2,
which we find to be less useful.

In the presence of unequal variances and correlation, MDI inter-
pretation is subtle; however proper acknowledgment of these
important data features is crucial for characterizing cohort dissim-
ilarity validly. For simplicity, assume we wish to calculate the MDI
from analysis of two ICD-9 sections, where r2

1 and r2
2 are variances

for b1 and b2 respectively, and q is the estimated correlation. It is
straightforward to show that the MDI is equal to

MDI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
r2

1 þ r2
2

ðb2
1r2

2 þ b2
2r2

1 � 2qb1b2r1r2Þ
s

:

Upon inspection, it can be seen that MDI does not depend on the
magnitude of r2

1 and r2
2 (i.e., it does not depend on sample size),

but it is affected by their relative size and by q. Fig. 1 displays
the impact of these data features on the MDI, and just as important,



Fig. 1. Example Morbidity Dissimilarity Indices (MDI) for four configurations. MDIs were drawn for ðr2
1=r2

2;qÞ equal to (1, 0), (3, 0), (1, 0.75), and (3, 0.75) in panels (a), (b), (c),
and (d), respectively, where r2

1 ¼ Varðb1Þ and r2
2 ¼ Varðb2Þ and q is the correlation between b1 and b2. The solid and dashed contours display the set of all ðb1; b2Þ, that yield

MDI equal to 0.5 and 1.0, respectively.
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it shows how misleading dissimilarity measures can be if data fea-
tures are ignored. Panels are defined by r2

1=r2
2 and q, and in each

panel, the solid and dashed black lines display the set of all
ðb1; b2Þ that result in MDI values equal to 0.5 and 1.0, respectively.
Notice that unequal variances stretches or contracts and correla-
tion rotates the parameter space, in that the set of all points corre-
sponding to, say, MDI = 0.5 differs across panels in the figure. The
point (1.5, 0.5) is denoted on all panels as a reference point, and
the MDI for (1.5, 0.5) in panels (a), (b), (c), and (d), is 1.12, 0.83,
0.86, and 0.51, respectively. That is, if the data structure is given
by panel (d), and we ignore the correlation and the differences in
variances (e.g., by assuming panel (a) is true) then we will overes-
timate dissimilarity by more than twofold on the log odds ratio
scale. With proper analyses, the MDI effectively addresses unequal
variances and correlation. Thus, simpler indices that ignore their
impact are not recommended.

4. Results

Demographic characteristics and subject experiences of 17 070
patients observed from January 1, 2001 to December 31, 2007 from
eMERGE network sites are shown in Table 1. The NU-T2D cohort
was the most racially diverse with minorities representing 36 per-
cent of its sample. The proportion of female subjects ranged from
36% in MAY-PAD to 70% in VU-QRS samples. The GHC-CAT sample
was the oldest, with 76 percent of patients being born prior to
1928. This was due to the requirement that patients included in
this sample must also qualify for a study on dementia in the el-
derly. MAY-PAD and MAY-CON cohorts were observed on the few-
est number of days with median values equaling 44, while the
medians in the other populations ranged from 76 to 124 days.
The two cohorts with the fewest number of unique codes were
the type 2 diabetes controls at NU and VU, where the median num-
ber of unique ICD-9 categories, sections and chapters observed
were 11, 9, and 6, and 7, 6, and 4, respectively.

Fig. 2 displays the raw prevalence of co-morbidities in several
phenotype-site cohort pairs for ICD-9 categories, sections, and chap-
ter using Bland–Altman plots [27], with codes used to define cohorts
(250.* codes for type II diabetics; 366.*, 374.*, 385.*, 743.3*, 744.3,
742.3, and 753.0 for senile cataracts; 440, 440.2, 433.*, 433.*,
434.*, 435.*, 436.*, 437.*, 438.*, 441.*, 442.*, 443.*, and 444.* for
peripheral arterial disease) having been removed. While these plots



Table 1
Demographic characteristics of the nine eMERGE cohorts under study between January 1, 2001 to December 31, 2007.

GHC-CAT MAR-CAT MAY-CON MAY-PAD NU-CON NU-T2D VU-CON VU-QRS VU-T2D

N 2217 2614 1181 972 850 672 2236 1055 5273

Ethnicity
African American 0.04 0 0 0 0.08 0.23 0.09 0.13 0.18
Asian 0.03 0 0 0 0 0 0.01 0.01 0.01
Othera 0.01 0 0 0 0.07 0.13 0.02 0.01 0.02
Unknownb 0.02 0 0.03 0.02 0 0 0.12 0.01 0.02
White 0.90 0.99 0.96 0.98 0.85 0.64 0.76 0.84 0.77

Female 0.62 0.58 0.43 0.36 0.65 0.52 0.64 0.7 0.53

Born before 1928 0.76 0.38 0.04 0.22 0.01 0.04 0.05 0.03 0.08

Age if born in or after
1928

70 (65, 73) 65 (53, 72) 60 (52, 69) 64 (50, 72) 41 (27, 59) 55 (40, 68) 46 (25, 64) 48 (28, 64) 53 (33, 68)

Years of observation 6.7 (4.6, 6.9) 6.7 (5.8, 6.9) 6.3 (4.5, 6.9) 6.3 (4, 6.9) 5.6 (3.6, 6.8) 6.3 (3.8, 6.9) 5.5 (3.4, 6.7) 6 (3.7, 6.8) 6.3 (3.8, 6.9)
Unique visit days 97 (45, 198) 101 (44,

198)
44 (13, 152) 44 (14, 143) 76 (25, 186) 86 (32, 219) 95 (32, 226) 113 (35,

238)
124 (43,
244)

Total ICD9s 221 (93,
483)

215 (90,
452)

159 (50,
496)

160 (51,
503)

196 (47,
579)

243 (62,
640)

193 (57,
520)

221 (67,
574)

249 (84,
604)

Unique ICD-9s 62 (37, 116) 62 (34, 114) 46 (21, 99) 48 (21, 117) 45 (15, 101) 52 (16, 101) 53 (19, 109) 60 (22, 118) 63 (26, 117)
Unique categories 36 (19, 63) 34 (18, 57) 21 (10, 38) 27 (11, 51) 11 (5, 25) 26 (10, 52) 7 (2, 16) 15 (5, 34) 21 (8, 47)
Unique sections 23 (13, 35) 20 (11, 31) 15 (8, 23) 17 (8, 29) 9 (4, 17) 18 (7, 30) 6 (2, 12) 11 (4, 22) 15 (6, 28)
Unique chapters 11 (7, 13) 10 (7, 13) 9 (6, 11) 9 (5, 12) 6 (3, 10) 9 (5, 12) 4 (2, 8) 7 (3, 11) 8 (4, 12)

a ‘‘Other” ethnicities include Hispanics, Pacific Islander, American Indians, and individuals reporting multiple ethnicities.
b ‘‘Unknown” ethnicity indicates that no value for this field was recorded in the EMR. Categorical variables are summarized with proportions and continuous variables are

summarized with, 50th (10th, 90th) percentiles.
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have limitations since they are not adjusted for demographic and
other characteristics, they demonstrate interesting patterns. The
common site – case versus control plots (NU-T2D versus NU-CON
and MAY-PAD versus MAY-CON) in the first two rows of panels show
that the cases tend to exhibit a higher prevalence of co-morbidities
than their associated controls, though this is more pronounced in the
NU plots than in the MAY plots. Chapter level rates between MAY-
PAD and MAY-CON appear reasonably similar to one another while
even at this highly aggregated level of summarization the NU-T2D
cohort tends to exhibit higher rates of morbidities than does its con-
trol cohort. The lower two rows of plots display common pheno-
types compared across different sites (NU-T2D versus VU-T2D and
MAR-CAT versus GHC-CAT). The co-morbidity profiles in these pairs
of cohorts are more similar to one another than in the upper two
panels. NU-T2D patients tend to experience slightly higher rates of
morbidities than VU-T2D patients, though MAR-CAT and GHC-CAT
populations appear comparable to one another except in one mor-
bidity category (indicated by the outlying, uppermost point in each
of the plots in the bottom row).

Figs. 3 and 4 display the results from stage 1 of the analysis pro-
tocol. They show the adjusted odds ratios based on multiple logis-
tic regression models for the 66 ICD-9 sections, ordered
alphabetically by ICD-9 chapter and then by section. The size of
the plotting points is inversely related to the confidence interval
length, although we limited the size of points when confidence
intervals were tight, and ‘‘X” denotes a very large odds ratio with
the lower confidence bound being greater than 20. In Fig. 3, we
show within-site, case versus control comparisons at NU, VU, and
MAY, and in Fig. 4 we show two, same-phenotype, different-site
comparisons (GHC-CAT versus MAR-CAT and NU-T2D versus VU-
T2D), and a different-phenotype, different-site comparison (MAY-
PAD versus VU-QRS). Consistent with Fig. 2, morbidity profiles in
the cohorts with the same phenotype, but at different sites
(Fig. 4a and b), are more similar to one another than cases versus
controls at the same site (Fig. 3a–c) and different phenotypes at
different sites (Fig. 4c) as odds ratios tend to be closer to one.

Figs. 3 and 4 highlight important patterns of differences be-
tween pairs of cohorts. For example, while the GHC-CAT and
MAR-CAT populations appear to have similar profiles (Fig. 4), we
observe that ICD-9 sections ‘‘neoplasms of uncertain behavior”
and ‘‘dislocation” occur at higher rates at GHC than at MAR, and
section ‘‘other metabolic and immunity disorders” occurs at a
much higher rate at MAR than at GHC. This was also observed in
Fig. 2. Compared with their controls, adjusted co-morbidity risk
was higher for NU-T2D and VU-T2D cohorts over the range of
ICD-9 sections, though this result appear less pronounced for the
MAY-PAD versus MAY-CON comparison. Fig. 4c shows that the
MAY-PAD cohort tended to exhibit higher rates of nervous system
and (as expected) circulatory system disorders than the VU-QRS
cohort though the opposite was true for neoplasms.

Simple numerical summaries describing differences among pop-
ulations are complementary and sometimes preferred to the graph-
ical depictions of individual differences, such as in Figs. 3 and 4. The
MDI from stage 2 of the analysis protocol for select cohort pairs are
shown in Table 2 for ICD-9 sections within chapters and then over
the range of all sections. Among the pairwise comparisons, the
two same-phenotype, different-site cohorts appeared most similar
to one another with an overall MDI of 0.47 for the CAT cohorts (col-
umn 5) and 0.44 for the T2D cohorts (column 6). While these values
imply non-trivial differences between the cohorts with the same
phenotypes at different sites, it is worth noting that the overall
MDI for NOR-T2D versus VAN-T2D is just over half the size of the
MDI for VAN-T2D versus VAN-CON (MDI = 0.80) and for NOR-T2D
versus NOR-CON (MDI = 0.82). That is, the impact of type II diabetes
on the overall morbidity profile is approximately 80% larger than the
impact of site. Focusing further on ICD-9 sections in the ‘‘Endocrine,
metabolic and nutritional immunity” ICD-9 chapter, the impact of
type II diabetes is at least 150% larger than the impact of site, where
MDI is equal to 2.10, 2.18, and 0.83 for VAN-T2D versus VAN-CON,
NOR-T2D versus NOR-CON, and NOR-T2D versus VAN-T2D, respec-
tively. ICD-9 sections within the ‘‘musculoskeletal system and con-
nective tissue” ICD-9 chapter appeared to be least associated with
sites and phenotypes as MDI values ranged from 0.16 for MAY-
PAD versus MAY-CON, to 0.50 for the VU-T2D versus VU-CON.

It should be noted that with finite samples, the MDI measure
would be non-zero even when cohorts are randomly sampled from
the same populations. However, with large samples such as those
discussed here, under random sampling from a single population,



Fig. 2. Bland–Altman plots comparing unadjusted rates of ICD-9 categories, sections, and chapters for pairs of populations.
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it will be very close to zero. We conducted all analyses having
repeatedly and randomly reassigned cohort identifiers (e.g., using
a Monte-Carlo based randomization approach to simulate random
samples from a single population). After rounding to the nearest
hundredth, none of the values corresponding to those shown in Ta-
ble 2 exceeded 0.02.



Fig. 3. Adjusted odds ratios, based on stage 1 logistic regression analyses, comparing VU-T2D to VU-CON, NU-T2D to NU-CON, and MAY-PAD to MAY-CON. The symbol ‘‘X”
denotes an extremely high odds ratio whose lower confidence limit exceeds 20.
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5. Discussion

We have proposed a general two-stage analysis approach for
systematic characterization of co-morbidity profile differences be-
tween cohorts derived from EMRs. The strategy involves regression
modeling over a range of ICD-9 sections, graphical displays of re-
sults, and summarization of the differences with the MDI for
broader insights. Results from first and second stage analyses are



Fig. 4. Adjusted odds ratios, based on stage 1 logistic regression analyses, comparing GHC-CAT to MAR-CAT, NU-T2D to VU-T2D, and MAY-PAD to VU-QRS. The symbol ‘‘X”
denotes an extremely high odds ratio whose lower confidence limit exceeds 20.
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complementary, and the breadth of the co-morbidities one chooses
to examine depends on study objectives. If the objective is to char-
acterize dissimilarity broadly (e.g., comparing the differences be-
tween two hospitals or finding the ‘‘nearest neighbor” between
two cohorts) then a diverse range of morbidities should be consid-
ered. However, if the objective is to anticipate analytical challenges
to a multicenter study (e.g., variance inflation or power reduction
due to among site heterogeneity) where the target phenotype
has been identified but has not yet been ascertained, then the
range of morbidities to consider should be narrower and should
be related to the target phenotype. The MDI is on the same scale
as parameters in logistic regression analyses, and so it has an intu-



Table 2
Morbidity Dissimilarity Index for cohort pairs.

Chapter VU-T2D vs VU-
CON

NU-T2D vs NU-
CON

MAY-PAD vs MAY-
CON

GHC-CAT vs MAR-
CAT

NU-T2D vs VAN-
T2D

VAN-QRS vs MAY-
PAD

Congenital anomalies 1.10 0.73 0.30 0.77 0.55 0.94
Digestive system 0.88 0.70 0.24 0.39 0.39 0.74
Diseases blood and blood-forming

organs
1.70 1.30 0.70 0.41 0.18 0.57

Diseases of the circulatory system 1.71 1.35 1.44 0.34 0.49 1.70
Diseases of the genitourinary system 1.02 0.94 0.88 0.48 0.43 0.51
Diseases of the respiratory system 0.95 0.92 0.61 0.27 0.38 0.64
Diseases of the skin and subcutaneous

tissue
0.62 0.68 0.56 0.29 0.52 0.69

Endocrine nutritional metabolic
immunity

2.10 2.18 0.91 1.20 0.83 1.47

Infectious and parasitic diseases 1.32 0.65 0.59 0.48 0.51 0.64
Injury and poisoning 0.95 1.20 1.07 0.56 0.53 1.15
Mental disorders 0.84 0.81 0.45 0.47 0.82 0.63
Musculoskeletal system and connective

tissue
0.50 0.34 0.16 0.36 0.20 0.26

Neoplasms 0.58 0.51 0.51 0.66 0.56 0.81
Nervous system and sense organs 0.73 0.81 0.72 0.28 0.61 0.82
Across all ICD-9 sections 0.80 0.82 0.66 0.47 0.44 0.75
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itively appealing interpretation. It can also be exponentiated if one
wishes characterize dissimilarity with odds ratios.

In the eMERGE study analysis, we found that cohorts with the
same phenotypes at different institutions appeared to have more
similar morbidity profiles than those representing different pheno-
types, providing some reassurance for the planned network pro-
jects. We intend to perform this analysis on many eMERGE
projects prior to their implementation, as results and implications
will depend upon the phenotype. As more of the phenotype de-
fined populations become available, these and other data will bet-
ter inform the development of general guidelines for how ‘similar’
populations should be for pooled genetic or clinical analysis. While
the MDI can be interpreted as a measure of dissimilarity on the
scale of log odds ratios, its aptness for proactively capturing poten-
tially heterogeneous site-specific genotype-phenotype associations
depends on a number of data features and perhaps most impor-
tantly on the strength of the relationship between the morbidities
that comprise it and the phenotype of interest. The stronger the
relationship, the more likely it is to be useful. That being said, it
can only be used as a guide since morbidity profile dissimilarity
does not capture genotype-phenotype association heterogeneity.
As an area for future research, we will explore various data features
that impact the utility of the MDI for this aim. We will also explore
the utility of formally incorporating domain structure (i.e., the ICD-
9 taxonomy) into the calculation of the overall MDI. In our two-
stage approach, we acknowledged domain structure explicitly by
organizing Figs. 3 and 4 by ICD-9 chapters and by calculating chap-
ter-specific MDIs; however the domain structure was not implicit
in the calculation of the overall MDI. The formal incorporation of
this structure will effectively involve a reweighting of ICD-9.

This analytical protocol is not limited to the ICD-9 coding sys-
tem and could be used for other classification schemes, such as
CPT codes, medications given, or NLP-derived disease codes
mapped to controlled terminologies such as SNOMED or the UMLS.
Using NLP may improve recall and precision of disease identifica-
tion [28,29]. One challenge, if mapping to a vocabulary such as
the UMLS, would be to aggregate codes at an appropriate level.
For instance, as discussed earlier, we found that performing the
tests of associations using ICD-9 category codes (904 unique codes)
provided insufficient counts of patients with each code to allow for
statistical analysis. Thus, a large percentage of possibly important
codes would have been removed from the analysis.

There are several limitations of this study. There are a number
of known problems with ICD-9 codes for diagnosis, including false
positives and false negatives [30]. At eMERGE network institutions,
professional coders typically entered inpatient codes, while outpa-
tient codes resulted from direct physician entry. Invalid or incor-
rect codes are often entered, either from memory or from pre-
populated lists (e.g., a type 1 diabetes code when a type 2 code is
intended). Codes that are difficult to find or that do not lead to sig-
nificant reimbursement may be excluded. Some institutions arbi-
trarily limit the number of codes stored in their data warehouse
from a particular visit, while others do not, and some data ware-
houses include both incorrect and corrected codes. The ICD-9 hier-
archy itself is not optimal for phenotypic analysis, since it is
designed and maintained to support administrative and billing
operations. In addition, coding practices can vary among practitio-
ners within institutions and between institutions. We considered
only diagnosis codes and demographics in our comparisons, and
due to age truncation, there is likely to be residual confounding.
Other health information, such as medication information and pro-
cedures received, are important markers of the veracity and sever-
ity of disease and if available could also be included in analyses.
Finally, we did not utilize disease onset times. It would be very
interesting to conduct analyses that consider morbidity timing
and morbidity coding in relation to disease onset times. For exam-
ple, one could examine how coding practices change from before
disease onset to after disease onset, or one could examine coding
trends leading up to the time of disease onset.

Future clinical and genomic research will benefit from deriving
samples from diverse data repositories. The ability to investigate
rare diseases for genomic and environmental influences will re-
quire aggregation of samples from multiple repositories. We pres-
ent an initial attempt to highlight and quantify the non-random
influences of geographic and provider practices to inform analysis
of such data. More research is needed to study the certainty of ICD-
9 codes and use of other resources to improve the accuracy of co-
morbidity assessment and severity.
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