148 research outputs found

    CKM and Tri-bimaximal MNS Matrices in a SU(5) x (d)T Model

    Full text link
    We propose a model based on SU(5) x {}^{(d)}T which successfully gives rise to near tri-bimaximal leptonic mixing as well as realistic CKM matrix elements for the quarks. The Georgi-Jarlskog relations for three generations are also obtained. Due to the {}^{(d)}T transformation property of the matter fields, the b-quark mass can be generated only when the {}^{(d)}T symmetry is broken, giving a dynamical origin for the hierarchy between m_{b} and m_{t}. There are only nine operators allowed in the Yukawa sector up to at least mass dimension seven due to an additional Z_{12} x Z'_{12} symmetry, which also forbids, up to some high orders, operators that lead to proton decay. The resulting model has a total of nine parameters in the charged fermion and neutrino sectors, and hence is very predictive. In addition to the prediction for \theta_{13} \simeq \theta_{c}/3 \sqrt{2}, the model gives rise to a sum rule, \tan^{2}\theta_{\odot} \simeq \tan^{2} \theta_{\odot, \mathrm{TBM}} - {1/2} \theta_{c} \cos\beta, which is a consequence of the Georgi-Jarlskog relations in the quark sector. This deviation could account for the difference between the experimental best fit value for the solar mixing angle and the value predicted by the tri-bimaximal mixing matrix.Comment: 11 pages; v2: additional references added; minor modifications made; conclusion unchanged; v3: version to appear in Phys. Lett.

    Neutrino Mass Models: circa 2008

    Full text link
    We review recent developments in theoretical models for neutrino masses and mixing. Emphases are given to models based on finite group family symmetries. In particular, we describe one recent model based on SU(5), in which both the tri-bimaximal neutrino mixing and realistic CKM matrix are generated. We also discuss two models based on a non-anomalous U(1)_F family symmetry in which the gauge anomalies are cancelled due to the presence of the right-handed neutrinos. In one of these models, the seesaw scale can be as low as a TeV; in the other model, which is based on SUSY SU(5), the U(1)_F symmetry forbids Higgs-mediated proton decays.Comment: Based on Plenary Talk presented at the Neutrino Oscillation Workshop (NOW2008), Conca Specchiulla, Italy, September 6-13, 2008; 6 page

    Group Theoretical Origin of CP Violation

    Get PDF
    We propose the complex group theoretical Clebsch-Gordon coefficients as a novel origin of CP violation. This is manifest in our model based on SU(5) combined with the T' group as the family symmetry. The complex CG coefficients in T' lead to explicit CP violation which is thus geometrical in origin. The predicted CP violation measures in the quark sector are consistent with the current experimental data. The corrections due to leptonic Dirac CP violating phase gives the experimental best fit value for the solar mixing angle, and we also gets the right amount of the baryonic asymmetry.Comment: v1: 4 pages; v2: RGE corrections included giving better agreement with experiments, abstract shortened; v3: Title of the paper has been changed, references added, version to appear in Phys. Lett.

    Phenomenology of flavor-mediated supersymmetry breaking

    Get PDF
    The phenomenology of a new economical SUSY model that utilizes dynamical SUSY breaking and gauge-mediation (GM) for the generation of the sparticle spectrum and the hierarchy of fermion masses is discussed. Similarities between the communication of SUSY breaking through a messenger sector, and the generation of flavor using the Froggatt-Nielsen (FN) mechanism are exploited, leading to the identification of vector-like messenger fields with FN fields, and the messenger U(1) as a flavor symmetry. An immediate consequence is that the first and second generation scalars acquire flavor-dependent masses, but do not violate FCNC bounds since their mass scale, consistent with effective SUSY, is of order 10 TeV. We define and advocate a minimal flavor-mediated model (MFMM), recently introduced in the literature, that successfully accommodates the small flavor-breaking parameters of the standard model using order one couplings and ratios of flavon field vevs. The mediation of SUSY breaking occurs via two-loop log-enhanced GM contributions, as well as several one-loop and two-loop Yukawa-mediated contributions for which we provide analytical expressions. The MFMM is parameterized by a small set of masses and couplings, with values restricted by several model constraints and experimental data. The next-to-lightest sparticle (NLSP) always has a decay length that is larger than the scale of a detector, and is either the lightest stau or the lightest neutralino. Similar to ordinary GM models, the best collider search strategies are, respectively, inclusive production of at least one highly ionizing track, or events with many taus plus missing energy. In addition, D^0 - \bar{D}^0 mixing is also a generic low energy signal. Finally, the dynamical generation of the neutrino masses is briefly discussed.Comment: 54 pages, LaTeX, 8 figure

    Measurement of the B0-anti-B0-Oscillation Frequency with Inclusive Dilepton Events

    Get PDF
    The B0B^0-Bˉ0\bar B^0 oscillation frequency has been measured with a sample of 23 million \B\bar B pairs collected with the BABAR detector at the PEP-II asymmetric B Factory at SLAC. In this sample, we select events in which both B mesons decay semileptonically and use the charge of the leptons to identify the flavor of each B meson. A simultaneous fit to the decay time difference distributions for opposite- and same-sign dilepton events gives Δmd=0.493±0.012(stat)±0.009(syst)\Delta m_d = 0.493 \pm 0.012{(stat)}\pm 0.009{(syst)} ps1^{-1}.Comment: 7 pages, 1 figure, submitted to Physical Review Letter

    Measurement of the CP-Violating Asymmetry Amplitude sin2β\beta

    Get PDF
    We present results on time-dependent CP-violating asymmetries in neutral B decays to several CP eigenstates. The measurements use a data sample of about 88 million Y(4S) --> B Bbar decays collected between 1999 and 2002 with the BABAR detector at the PEP-II asymmetric-energy B Factory at SLAC. We study events in which one neutral B meson is fully reconstructed in a final state containing a charmonium meson and the other B meson is determined to be either a B0 or B0bar from its decay products. The amplitude of the CP-violating asymmetry, which in the Standard Model is proportional to sin2beta, is derived from the decay-time distributions in such events. We measure sin2beta = 0.741 +/- 0.067 (stat) +/- 0.033 (syst) and |lambda| = 0.948 +/- 0.051 (stat) +/- 0.017 (syst). The magnitude of lambda is consistent with unity, in agreement with the Standard Model expectation of no direct CP violation in these modes

    The Physics of the B Factories

    Get PDF
    corecore