122 research outputs found
A novel electrospun, hydrophobic, and elastomeric styrene-butadiene-styrene membrane for membrane distillation applications
© 2017 In this study, a novel hydrophobic, microporous membrane was fabricated from styrene-butadiene-styrene (SBS) polymer using electrospinning and evaluated for membrane distillation applications. Compared to a commercially available polytetrafluoroethylene (PTFE) membrane, the SBS membrane had larger membrane pore size and fiber diameter and comparable membrane porosity. The fabricated SBS showed slightly lower water flux than the PTFE membrane because it was two times thicker. However, the SBS membrane had better salt rejection and most importantly could be fabricated via a simple process. The SBS membrane was also more hydrophobic than the reference PTFE membrane. In particular, as temperature of the reference water liquid increased to 60 °C, the SBS membrane remained hydrophobic with a contact angle of 100° whereas the PTFE became hydrophilic with a contact angle of less than 90°. The hydrophobic membrane surface prevented the intrusion of liquid into the membrane pores, thus improving the salt rejection of the SBS membrane. In addition, the SBS membrane had superior mechanical strength over the PTFE membrane. Using the SBS membrane, stable water flux was achieved throughout an extended MD operation period of 120 h to produce excellent quality distillate (over 99.7% salt rejection) from seawater
Representations of elementary abelian p-groups and finite subgroups of field
Suppose F is a field of prime characteristic p and E is a finite subgroup of the additive group (F,+). Then E is an elementary abelian p-group. We consider two such subgroups, say E and E', to be equivalent if there is an ? ? F× := F \ {0} such that E = ?E'. In this paper we show that rational functions can be used to distinguish equivalence classes of subgroups and, for subgroups of prime rank or rank less than twelve, we give explicit finite sets of separating invariants
Coordination of Cell Differentiation and Migration in Mathematical Models of Caudal Embryonic Axis Extension
Vertebrate embryos display a predominant head-to-tail body axis whose formation is associated with the progressive development of post-cranial structures from a pool of caudal undifferentiated cells. This involves the maintenance of active FGF signaling in this caudal region as a consequence of the restricted production of the secreted factor FGF8. FGF8 is transcribed specifically in the caudal precursor region and is down-regulated as cells differentiate and the embryo extends caudally. We are interested in understanding the progressive down-regulation of FGF8 and its coordination with the caudal movement of cells which is also known to be FGF-signaling dependent. Our study is performed using mathematical modeling and computer simulations. We use an individual-based hybrid model as well as a caricature continuous model for the simulation of experimental observations (ours and those known from the literature) in order to examine possible mechanisms that drive differentiation and cell movement during the axis elongation. Using these models we have identified a possible gene regulatory network involving self-repression of a caudal morphogen coupled to directional domain movement that may account for progressive down-regulation of FGF8 and conservation of the FGF8 domain of expression. Furthermore, we have shown that chemotaxis driven by molecules, such as FGF8 secreted in the stem zone, could underlie the migration of the caudal precursor zone and, therefore, embryonic axis extension. These mechanisms may also be at play in other developmental processes displaying a similar mode of axis extension coupled to cell differentiation
Dielectronic and trielectronic recombination rate coefficients of Be-like Ar14+
Electron–ion recombination of Be-like 40Ar14+ has been measured by employing the electron–ion merged-beams method at the cooler storage ring CSRm. The measured absolute recombination rate coefficients for collision energies from 0 to 60 eV are presented, covering all dielectronic recombination (DR) resonances associated with 2s 2 → 2s2p core transitions. In addition, strong trielectronic recombination (TR) resonances associated with 2s 2 → 2p 2 core transitions were observed. Both DR and TR processes lead to series of peaks in the measured recombination spectrum, which have been identified by the Rydberg formula. Theoretical calculations of recombination rate coefficients were performed using the state-of-the-art multi-configuration Breit–Pauli atomic structure code AUTOSTRUCTURE to compare with the experimental results. The plasma rate coefficients for DR+TR of Ar14+ were deduced from the measured electron–ion recombination rate coefficients in the temperature range from 103 to 107 K, and compared with calculated data from the literature. The experimentally derived plasma rate coefficients are 60% larger and 30% lower than the previously recommended atomic data for the temperature ranges of photoionized plasmas and collisionally ionized plasmas, respectively. However, good agreement was found between experimental results and the calculations by Gu and Colgan et al. The plasma rate coefficients deduced from experiment and calculated by the current AUTOSTRUCTURE code show agreement that is better than 30% from 104 to 107 K. The present results constitute a set of benchmark data for use in astrophysical modeling
In silico pharmacodynamics, toxicity profile and biological activities of the Saharan medicinal plant Limoniastrum feei
ABSTRACT In-silico study was performed to find the pharmacodynamics, toxicity profiles and biological activities of three phytochemicals isolated from Limoniastrum feei (Plumbagenaceae). Online pharmacokinetic tools were used to estimate the potential of Quercetin, kaempferol-3-O-β-D-glucopyranoside (astragalin) and quercitin-7-O-β-D-glucopyranoside as specific drugs. Then the prediction of potential targets of these compounds were investigated using PharmMapper. Auto-Dock 4.0 software was used to investigate the different interactions of these compounds with the targets predicted earlier. The permeability of quercetin was found within the range stated by Lipinski ׳s rule of five. Hematopoietic prostaglandin (PG) D synthase (HPGDS), farnesyl diphosphate synthetase (FPPS) and the deoxycytidine kinase (DCK) were potential targets for quercetin, astragalin and quercetin 7, respectively. Quercetin showed antiallergic and anti-inflammatory activity, while astragalin and quercetin 7 were predicted to have anticancer activities. The activity of Astragalin appeared to be mediated by FPPS inhibition. The inhibition of DCK was predicted as the anticancer mechanisms of quercetin 7. The compounds showed interesting interactions and satisfactory binding energies when docked into their targets. These compounds are proposed to have activities against a variety of human aliments such as allergy, tumors, muscular dystrophy, and diabetic cataracts
Genetic Dissection of the Canq1 Locus Governing Variation in Extent of the Collateral Circulation
<div><h3>Background</h3><p>Native (pre-existing) collaterals are arteriole-to-arteriole anastomoses that interconnect adjacent arterial trees and serve as endogenous bypass vessels that limit tissue injury in ischemic stroke, myocardial infarction, coronary and peripheral artery disease. Their extent (number and diameter) varies widely among mouse strains and healthy humans. We previously identified a major quantitative trait locus on chromosome 7 (<em>Canq1</em>, LOD = 29) responsible for 37% of the heritable variation in collateral extent between C57BL/6 and BALB/c mice. We sought to identify candidate genes in <em>Canq1</em> responsible for collateral variation in the cerebral pial circulation, a tissue whose strain-dependent variation is shared by similar variation in other tissues.</p> <h3>Methods and Findings</h3><p>Collateral extent was intermediate in a recombinant inbred line that splits <em>Canq1</em> between the C57BL/6 and BALB/c strains. Phenotyping and SNP-mapping of an expanded panel of twenty-one informative inbred strains narrowed the <em>Canq1</em> locus, and genome-wide linkage analysis of a SWRxSJL-F2 cross confirmed its haplotype structure. Collateral extent, infarct volume after cerebral artery occlusion, bleeding time, and re-bleeding time did not differ in knockout mice for two vascular-related genes located in <em>Canq1</em>, <em>IL4ra</em> and <em>Itgal</em>. Transcript abundance of 6 out of 116 genes within the 95% confidence interval of <em>Canq1</em> were differentially expressed >2-fold (p-value<0.05÷150) in the cortical <em>pia mater</em> from C57BL/6 and BALB/c embryos at E14.5, E16.5 and E18.5 time-points that span the period of collateral formation.</p> <h3>Conclusions</h3><p>These findings refine the <em>Canq1</em> locus and identify several genes as high-priority candidates important in specifying native collateral formation and its wide variation.</p> </div
Atg7-Mediated Autophagy Is Involved in the Neural Crest Cell Generation in Chick Embryo
Autophagy plays a very important role in numerous physiological and pathological events. However, it still remains unclear whether Atg7-induced autophagy is involved in the regulation of neural crest cell production. In this study, we found the co-location of Atg7 and Pax7+ neural crest cells in early chick embryo development. Upregulation of Atg7 with unilateral transfection of full-length Atg7 increased Pax7+ and HNK-1+ cephalic and trunk neural crest cell numbers compared to either Control-GFP transfection or opposite neural tubes, suggesting that Atg7 over-expression in neural tubes could enhance the production of neural crest cells. BMP4 in situ hybridization and p-Smad1/5/8 immunofluorescent staining demonstrated that upregulation of Atg7 in neural tubes suppressed the BMP4/Smad signaling, which is considered to promote the delamination of neural crest cells. Interestingly, upregulation of Atg7 in neural tubes could significantly accelerate cell progression into the S phase, implying that Atg7 modulates cell cycle progression. However, β-catenin expression was not significantly altered. Finally, we demonstrated that upregulation of the Atg7 gene could activate autophagy as did Atg8. We have also observed that similar phenotypes, such as more HNK-1+ neural crest cells in the unilateral Atg8 transfection side of neural tubes, and the transfection with full-length Atg8-GFP certainly promote the numbers of BrdU+ neural crest cells in comparison to the GFP control. Taken together, we reveal that Atg7-induced autophagy is involved in regulating the production of neural crest cells in early chick embryos through the modification of the cell cycle
Pattern Formation of the Attraction-Repulsion Keller-Segel System
In this paper, the pattern formation of the attraction-repulsion Keller-Segel (ARKS) system is studied analytically and numerically. By the Hopf bifurcation theorem as well as the local and global bifurcation theorem, we rigorously establish the existence of time-periodic patterns and steady state patterns for the ARKS model in the full parameter regimes, which are identified by a linear stability analysis. We also show that when the chemotactic attraction is strong, a spiky steady state pattern can develop. Explicit time-periodic rippling wave patterns and spiky steady state patterns are obtained numerically by carefully selecting parameter values based on our theoretical results. The study in the paper asserts that chemotactic competitive interaction between attraction and repulsion can produce periodic patterns which are impossible for the chemotaxis model with a single chemical (either chemo-attractant or chemo-repellent)
Electron-ion recombination rate coefficients of Be-like 40Ca16+
Electron–ion recombination rate coefficients for beryllium-like calcium ions in the center of mass energy from 0 to51.88 eV have been measured by means of the electron–ion merged-beam technique at the main cooler storage ringat the Institute of Modern Physics in Lanzhou, China. The measurement energy range covers the dielectronicrecombination (DR) resonances associated with the 2s2 1S0 -> 2s2p 3P0,1,2, 1P1 core excitations and the trielectronicrecombination (TR) resonances associated with the 2s2 1S0 -> 2p2 3P0,1,2, 1D2, 1S0 core excitations. In addition,the AUTOSTRUCTURE code was used to calculate the recombination rate coefficients for comparison with theexperimental results. Resonant recombination originating from parent ions in the long-lived metastable state 2s2p 3P0 ions has been identified in the recombination spectrum below 1.25 eV. A good agreement is achievedbetween the experimental recombination spectrum and the result of the AUTOSTRUCTURE calculations whenfractions of 95% ground-state ions and 5% metastable ions are assumed in the calculation. It is found thatthe calculated TR resonance positions agree with the experimental peaks, while the resonance strengths areunderestimated by the theoretical calculation. Temperature dependent plasma rate coefficients for DR and TR inthe temperature range of 103–108 K were derived from the measured electron–ion recombination rate coefficientsand compared with the available theoretical results from the literature. In the temperature range of photoionizedplasmas, the presently calculated rate coefficients and the recent results of Gu & Colgan et al. are up to 30% lowerthan the experimentally derived ones, and the older atomic data are even up to 50% lower than the presentexperimental result. This is because strong resonances situated below electron–ion collision energies of 50 meVwere underestimated by the theoretical calculation, which also has a severe influence on the rate coefficients inlow-temperature plasmas. In the temperature range of collisionally ionized plasmas, agreement within 25% wasfound between the experimental result and the present calculation as well as the calculation by Colgan et al. Thepresent result constitutes a set of benchmark data for use in astrophysical modeling
- …