917 research outputs found

    The effects of myopic orthokeratology on intraocular pressure

    Get PDF
    Twelve orthokeratology patients were studied to determine whether myopic orthokeratology treatments had an effect on intraocular pressure. It was our hypothesis that myopic orthokeratology would have no significant effect on intraocular pressure. The patients were fit in the OK-3 design lens and re-evaluated each week for changes in intraocular pressure using a Goldmann applanation tonometer. The results of this study indicated that the null hypothesis was accepted. Although it was indicated that there was a statistically significant difference between pre- and post-treatment lOP measurements, we feel that this variation is well within the normal range for Goldmann applanation. The literature suggests that the following factors can cause variation in Goldmann lOP measurements: measurement technique, physiological and anatomical status of the eye and diurnal variation

    The Quantity of Intracluster Light: Comparing Theoretical and Observational Measurement Techniques Using Simulated Clusters

    Full text link
    Using a suite of N-body simulations of galaxy clusters specifically tailored to study the intracluster light (ICL) component, we measure the quantity of ICL using a number of different methods previously employed in the literature for both observational and simulation data sets. By measuring the ICL of the clusters using multiple techniques, we identify systematic differences in how each detection method identifies the ICL. We find that techniques which define the ICL solely based on the current position of the cluster luminosity, such as a surface brightness or local density threshold, tend to find less ICL than methods utilizing time or velocity information, including stellar particles' density history or binding energy. The range of ICL fractions (the fraction of the clusters' total luminosity found in the ICL component) we measure at z=0 across all our clusters using any definition span the range from 9-36%, and even within a single cluster different methods can change the measured ICL fraction by up to a factor of two. Separating the cluster's central galaxy from the surrounding ICL component is a challenge for all ICL techniques, and because the ICL is centrally concentrated within the cluster, the differences in the measured ICL quantity between techniques are largely a consequence of this central galaxy/ICL separation. We thoroughly explore the free parameters involved with each measurement method, and find that adjusting these parameters can change the measured ICL fraction by up to a factor of two. While for all definitions the quantity of ICL tends to increase with time, the ICL fraction does not grow at a uniform rate, nor even monotonically under some definitions. Thus, the ICL can be used as a rough indicator of dynamical age, where more dynamically advanced clusters will on average have higher ICL fractions.Comment: 18 pages, 11 figues. Accepted for publication in Ap

    Spatially Resolved Stellar Spectroscopy of the Ultra-diffuse Galaxy Dragonfly 44. III. Evidence for an Unexpected Star-Formation History

    Get PDF
    We use the Keck Cosmic Web Imager integral-field unit spectrograph to: 1) measure the global stellar population parameters for the ultra-diffuse galaxy (UDG) Dragonfly 44 (DF44) to much higher precision than previously possible for any UDG, and 2) for the first time measure spatially-resolved stellar population parameters of a UDG. We find that DF44 falls below the mass--metallicity relation established by canonical dwarf galaxies both in and beyond the Local Group. We measure a flat radial age gradient (mage+0.010.08+0.07m_{\rm age} \sim +0.01_{-0.08}^{+0.07} log Gyr kpc1^{-1}) and a flat-to-positive metallicity gradient (m[Fe/H]+0.080.11+0.11m_{\rm [Fe/H]} \sim +0.08_{-0.11}^{+0.11} dex kpc1^{-1}), which are inconsistent with the gradients measured in similarly pressure-supported dwarf galaxies. We also measure a flat-to-negative [Mg/Fe] gradient (m[Mg/Fe]0.180.17+0.17m_{\rm [Mg/Fe]} \sim -0.18_{-0.17}^{+0.17} dex kpc1^{-1}) such that the central 1.51.5 kpc of DF44 has stellar population parameters comparable to metal-poor globular clusters. Overall, DF44 does not have internal properties similar to other dwarf galaxies and is inconsistent with it having been puffed up through a prolonged, bursty star-formation history, as suggested by some simulations. Rather, the evidence indicates that DF44 experienced an intense epoch of "inside-out" star formation and then quenched early and catastrophically, such that star-formation was cut off more quickly than in canonical dwarf galaxies.Comment: Accepted to Ap

    Bulk Majorons at Colliders

    Get PDF
    Lepton number violation may arise via the spontaneous breakdown of a global symmetry. In extra dimensions, spontaneous lepton number violation in the bulk implies the existence of a Goldstone boson, the majoron J^(0), as well as an accompanying tower of Kaluza-Klein (KK) excitations, J^(n). Even if the zero-mode majoron is very weakly interacting, so that detection in low-energy processes is difficult, the sum over the tower of KK modes may partially compensate in processes of relevance at high-energy colliders. Here we consider the inclusive differential and total cross sections for e^- e^- --> W^- W^- J, where J represents a sum over KK modes. We show that allowed parameter choices exist for which this process may be accessible to a TeV-scale electron collider.Comment: 11 pages LaTeX, 3 eps figures (references added

    A Surprisingly High Pair Fraction for Extremely Massive Galaxies at z ~ 3 in the GOODS NICMOS Survey

    Full text link
    We calculate the major pair fraction and derive the major merger fraction and rate for 82 massive (M>1011MM_{*}>10^{11}M_{\odot}) galaxies at 1.7<z<3.01.7 < z < 3.0 utilising deep HST NICMOS data taken in the GOODS North and South fields. For the first time, our NICMOS data provides imaging with sufficient angular resolution and depth to collate a sufficiently large sample of massive galaxies at z >> 1.5 to reliably measure their pair fraction history. We find strong evidence that the pair fraction of massive galaxies evolves with redshift. We calculate a pair fraction of fmf_{m} = 0.29 +/- 0.06 for our whole sample at 1.7<z<3.01.7 < z < 3.0. Specifically, we fit a power law function of the form fm=f0(1+z)mf_{m}=f_{0}(1+z)^{m} to a combined sample of low redshift data from Conselice et al. (2007) and recently acquired high redshift data from the GOODS NICMOS Survey. We find a best fit to the free parameters of f0f_{0} = 0.008 +/- 0.003 and mm = 3.0 +/- 0.4. We go on to fit a theoretically motivated Press-Schechter curve to this data. This Press-Schechter fit, and the data, show no sign of levelling off or turning over, implying that the merger fraction of massive galaxies continues to rise with redshift out to z \sim 3. Since previous work has established that the merger fraction for lower mass galaxies turns over at z \sim 1.5 - 2.0, this is evidence that higher mass galaxies experience more mergers earlier than their lower mass counterparts, i.e. a galaxy assembly downsizing. Finally, we calculate a merger rate at z = 2.6 of \Re << 5 ×\times 105^{5} Gpc3^{-3} Gyr1^{-1}, which experiences no significant change to \Re << 1.2 ×\times 105^{5} Gpc3^{-3} Gyr1^{-1} at z = 0.5. This corresponds to an average M>1011MM_{*}>10^{11}M_{\odot} galaxy experiencing 1.7 +/- 0.5 mergers between z = 3 and z = 0.Comment: 5 pages, 3 figures, accepted to MNRA

    Small-Scale Structure in the SDSS and LCDM: Isolated L* Galaxies with Bright Satellites

    Full text link
    We use a volume-limited spectroscopic sample of isolated galaxies in the Sloan Digital Sky Survey (SDSS) to investigate the frequency and radial distribution of luminous (M_r <~ -18.3) satellites like the Large Magellanic Cloud (LMC) around ~L* Milky Way analogs and compare our results object-by-object to LCDM predictions based on abundance matching in simulations. We show that 12% of Milky Way-like galaxies host an LMC-like satellite within 75 kpc (projected), and 42 % within 250 kpc (projected). This implies ~10% have a satellite within the distance of the LMC, and ~40% of L* galaxies host a bright satellite within the virialized extent of their dark matter halos. Remarkably, the simulation reproduces the observed frequency, radial dependence, velocity distribution, and luminosity function of observed secondaries exceptionally well, suggesting that LCDM provides an accurate reproduction of the observed Universe to galaxies as faint as L~10^9 Lsun on ~50 kpc scales. When stacked, the observed projected pairwise velocity dispersion of these satellites is sigma~160 km/s, in agreement with abundance-matching expectations for their host halo masses. Finally, bright satellites around L* primaries are significantly redder than typical galaxies in their luminosity range, indicating that environmental quenching is operating within galaxy-size dark matter halos that typically contain only a single bright satellite. This redness trend is in stark contrast to the Milky Way's LMC, which is unusually blue even for a field galaxy. We suggest that the LMC's discrepant color might be further evidence that it is undergoing a triggered star-formation event upon first infall.Comment: 14 pages, 11 figures; accepted to Ap

    Optical Colors of Intracluster Light in the Virgo Cluster Core

    Full text link
    We continue our deep optical imaging survey of the Virgo cluster using the CWRU Burrell Schmidt telescope by presenting B-band surface photometry of the core of the Virgo cluster in order to study the cluster's intracluster light (ICL). We find ICL features down to mu_b ~ 29 mag sq. arcsec, confirming the results of Mihos et al. (2005), who saw a vast web of low-surface brightness streams, arcs, plumes, and diffuse light in the Virgo cluster core using V-band imaging. By combining these two data sets, we are able to measure the optical colors of many of the cluster's low-surface brightness features. While much of our imaging area is contaminated by galactic cirrus, the cluster core near the cD galaxy, M87, is unobscured. We trace the color profile of M87 out to over 2000 arcsec, and find a blueing trend with radius, continuing out to the largest radii. Moreover, we have measured the colors of several ICL features which extend beyond M87's outermost reaches and find that they have similar colors to the M87's halo itself, B-V ~ 0.8. The common colors of these features suggests that the extended outer envelopes of cD galaxies, such as M87, may be formed from similar streams, created by tidal interactions within the cluster, that have since dissolved into a smooth background in the cluster potential.Comment: 14 pages. Published in ApJ, September 201

    The DEEP2 Galaxy Redshift Survey: The Voronoi-Delaunay Method Catalog of Galaxy Groups

    Get PDF
    We present a public catalog of galaxy groups constructed from the spectroscopic sample of galaxies in the fourth data release from the Deep Extragalactic Evolutionary Probe 2 (DEEP2) Galaxy Redshift Survey, including the Extended Groth Strip (EGS). The catalog contains 1165 groups with two or more members in the EGS over the redshift range 0 0.6 in the rest of DEEP2. Twenty-five percent of EGS galaxies and fourteen percent of high-z DEEP2 galaxies are assigned to galaxy groups. The groups were detected using the Voronoi-Delaunay method (VDM) after it has been optimized on mock DEEP2 catalogs following similar methods to those employed in Gerke et al. In the optimization effort, we have taken particular care to ensure that the mock catalogs resemble the data as closely as possible, and we have fine-tuned our methods separately on mocks constructed for the EGS and the rest of DEEP2. We have also probed the effect of the assumed cosmology on our inferred group-finding efficiency by performing our optimization on three different mock catalogs with different background cosmologies, finding large differences in the group-finding success we can achieve for these different mocks. Using the mock catalog whose background cosmology is most consistent with current data, we estimate that the DEEP2 group catalog is 72% complete and 61% pure (74% and 67% for the EGS) and that the group finder correctly classifies 70% of galaxies that truly belong to groups, with an additional 46% of interloper galaxies contaminating the catalog (66% and 43% for the EGS). We also confirm that the VDM catalog reconstructs the abundance of galaxy groups with velocity dispersions above ~300 km s^(–1) to an accuracy better than the sample variance, and this successful reconstruction is not strongly dependent on cosmology. This makes the DEEP2 group catalog a promising probe of the growth of cosmic structure that can potentially be used for cosmological tests

    The XMM Cluster Survey: The Stellar Mass Assembly of Fossil Galaxies

    Get PDF
    This paper presents both the result of a search for fossil systems (FSs) within the XMM Cluster Survey and the Sloan Digital Sky Survey and the results of a study of the stellar mass assembly and stellar populations of their fossil galaxies. In total, 17 groups and clusters are identified at z < 0.25 with large magnitude gaps between the first and fourth brightest galaxies. All the information necessary to classify these systems as fossils is provided. For both groups and clusters, the total and fractional luminosity of the brightest galaxy is positively correlated with the magnitude gap. The brightest galaxies in FSs (called fossil galaxies) have stellar populations and star formation histories which are similar to normal brightest cluster galaxies (BCGs). However, at fixed group/cluster mass, the stellar masses of the fossil galaxies are larger compared to normal BCGs, a fact that holds true over a wide range of group/cluster masses. Moreover, the fossil galaxies are found to contain a significant fraction of the total optical luminosity of the group/cluster within 0.5R200, as much as 85%, compared to the non-fossils, which can have as little as 10%. Our results suggest that FSs formed early and in the highest density regions of the universe and that fossil galaxies represent the end products of galaxy mergers in groups and clusters. The online FS catalog can be found at http://www.astro.ljmu.ac.uk/~xcs/Harrison2012/XCSFSCat.html.Comment: 30 pages, 50 figures. ApJ published version, online FS catalog added: http://www.astro.ljmu.ac.uk/~xcs/Harrison2012/XCSFSCat.htm
    corecore