47 research outputs found

    Role of GSH and Iron-Sulfur Glutaredoxins in Iron Metabolism—Review

    Get PDF
    Glutathione (GSH) was initially identified and characterized for its redox properties and later for its contributions to detoxification reactions. Over the past decade, however, the essential contributions of glutathione to cellular iron metabolism have come more and more into focus. GSH is indispensable in mitochondrial iron-sulfur (FeS) cluster biosynthesis, primarily by co-ligating FeS clusters as a cofactor of the CGFS-type (class II) glutaredoxins (Grxs). GSH is required for the export of the yet to be defined FeS precursor from the mitochondria to the cytosol. In the cytosol, it is an essential cofactor, again of the multi-domain CGFS-type Grxs, master players in cellular iron and FeS trafficking. In this review, we summarize the recent advances and progress in this field. The most urgent open questions are discussed, such as the role of GSH in the export of FeS precursors from mitochondria, the physiological roles of the CGFS-type Grx interactions with BolA-like proteins and the cluster transfer between Grxs and recipient proteins

    Reversible Silencing of CFTR Chloride Channels by Glutathionylation

    Get PDF
    The cystic fibrosis transmembrane conductance regulator (CFTR) is a phosphorylation- and ATP-dependent chloride channel that modulates salt and water transport across lung and gut epithelia. The relationship between CFTR and oxidized forms of glutathione is of potential interest because reactive glutathione species are produced in inflamed epithelia where they may be modulators or substrates of CFTR. Here we show that CFTR channel activity in excised membrane patches is markedly inhibited by several oxidized forms of glutathione (i.e., GSSG, GSNO, and glutathione treated with diamide, a strong thiol oxidizer). Three lines of evidence indicate that the likely mechanism for this inhibitory effect is glutathionylation of a CFTR cysteine (i.e., formation of a mixed disulfide with glutathione): (a) channels could be protected from inhibition by pretreating the patch with NEM (a thiol alkylating agent) or by lowering the bath pH; (b) inhibited channels could be rescued by reducing agents (e.g., DTT) or by purified glutaredoxins (Grxs; thiol disulfide oxidoreductases) including a mutant Grx that specifically reduces mixed disulfides between glutathione and cysteines within proteins; and (c) reversible glutathionylation of CFTR polypeptides in microsomes could be detected biochemically under the same conditions. At the single channel level, the primary effect of reactive glutathione species was to markedly inhibit the opening rates of individual CFTR channels. CFTR channel inhibition was not obviously dependent on phosphorylation state but was markedly slowed when channels were first “locked open” by a poorly hydrolyzable ATP analogue (AMP-PNP). Consistent with the latter finding, we show that the major site of inhibition is cys-1344, a poorly conserved cysteine that lies proximal to the signature sequence in the second nucleotide binding domain (NBD2) of human CFTR. This region is predicted to participate in ATP-dependent channel opening and to be occluded in the nucleotide-bound state of the channel based on structural comparisons to related ATP binding cassette transporters. Our results demonstrate that human CFTR channels are reversibly inhibited by reactive glutathione species, and support an important role of the region proximal to the NBD2 signature sequence in ATP-dependent channel opening

    Thioredoxin and glutaredoxin system proteins-immunolocalization in the rat central nervous system

    Get PDF
    Background: The oxidoreductases of the thioredoxin (Trx) family of proteins play a major role in the cellularresponse to oxidative stress. Redox imbalance is a major feature of brain damage. For instance, neuronaldamage and glial reaction induced by a hypoxic–ischemic episode is highly related to glutamateexcitotoxicity, oxidative stress and mitochondrial dysfunction. Most animal models of hypoxia–ischemiain the central nervous system (CNS) use rats to study the mechanisms involved in neuronal cell death,however, no comprehensive study on the localization of the redox proteins in the rat CNS was available.Methods: The aim of this work was to study the distribution of the following proteins of the thioredoxin andglutathione/glutaredoxin (Grx) systems in the rat CNS by immunohistochemistry: Trx1, Trx2, TrxR1, TrxR2,Txnip, Grx1, Grx2, Grx3, Grx5, and ã-GCS, peroxiredoxin 1 (Prx1), Prx2, Prx3, Prx4, Prx5, and Prx6. We havefocused on areas most sensitive to a hypoxia–ischemic insult: Cerebellum, striatum, hippocampus, spinalcord, substantia nigra, cortex and retina.Results and conclusions: Previous studies implied that these redox proteins may be distributed in most celltypes and regions of the CNS. Here, we have observed several remarkable differences in both abundance and regional distribution that point to a complex interplay and crosstalk between the proteins of this family.General significance: We think that these data might be helpful to reveal new insights into the role of thiol redox pathways in the pathogenesis of hypoxia–ischemia insults and other disorder   of the CNS. This article is part of a Special Issue entitled Human and Murine Redox Protein Atlases.Fil: Aon Bertolino, Maria Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Cardiológicas. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Cardiológicas; ArgentinaFil: Romero, Juan Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Cardiológicas. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Cardiológicas; ArgentinaFil: Galeano, Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Cardiológicas. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Cardiológicas; ArgentinaFil: Holubiec, Mariana Ines. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Cardiológicas. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Cardiológicas; ArgentinaFil: Badorrey, Maria Sol. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Cardiológicas. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Cardiológicas; ArgentinaFil: Saraceno, Gustavo Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Cardiológicas. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Cardiológicas; ArgentinaFil: Hanschmann, Eva Maria. Phillipps-Universität Marburg; AlemaniaFil: Lillig, Christopher Horst. Phillipps-Universität Marburg; AlemaniaFil: Capani, Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Cardiológicas. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Cardiológicas; Argentin

    Cytosolic monothiol glutaredoxins function in intracellular iron sensing and trafficking via their bound iron-sulfur cluster

    Get PDF
    Iron is an essential nutrient for cells. It is unknown how iron, after its import into the cytosol, is specifically delivered to iron-dependent processes in various cellular compartments. Here, we identify an essential function of the conserved cytosolic monothiol glutaredoxins Grx3 and Grx4 in intracellular iron trafficking and sensing. Depletion of Grx3/4 specifically impaired all iron-requiring reactions in the cytosol, mitochondria, and nucleus, including the synthesis of Fe/S clusters, heme, and di-iron centers. These defects were caused by impairment of iron insertion into proteins and iron transfer to mitochondria, indicating that intracellular iron is not bioavailable, despite highly elevated cytosolic levels. The crucial task of Grx3/4 is mediated by a bridging, glutathione-containing Fe/S center that functions both as an iron sensor and in intracellular iron delivery. Collectively, our study uncovers an important role of monothiol glutaredoxins in cellular iron metabolism, with a surprising connection to cellular redox and sulfur metabolisms

    Neuronal damage induced by perinatal asphyxia is attenuated by postinjury glutaredoxin-2 administration

    Get PDF
    The general disruption of redox signaling following an ischemia-reperfusion episode has been proposed as a crucial component in neuronal death and consequently brain damage. Thioredoxin (Trx) family proteins control redox reactions and ensure protein regulation via specific, oxidative posttranslational modifications as part of cellular signaling processes. Trx proteins function in the manifestation, progression, and recovery following hypoxic/ischemic damage. Here, we analyzed the neuroprotective effects of postinjury, exogenous administration of Grx2 and Trx1 in a neonatal hypoxia/ischemia model. P7 Sprague-Dawley rats were subjected to right common carotid ligation or sham surgery, followed by an exposure to nitrogen. 1 h later, animals were injected i.p. with saline solution, 10 mg/kg recombinant Grx2 or Trx1, and euthanized 72 h postinjury. Results showed that Grx2 administration, and to some extent Trx1, attenuated part of the neuronal damage associated with a perinatal hypoxic/ischemic damage, such as glutamate excitotoxicity, axonal integrity, and astrogliosis. Moreover, these treatments also prevented some of the consequences of the induced neural injury, such as the delay of neurobehavioral development. To our knowledge, this is the first study demonstrating neuroprotective effects of recombinant Trx proteins on the outcome of neonatal hypoxia/ischemia, implying clinical potential as neuroprotective agents that might counteract neonatal hypoxia/ischemia injury

    Cysteine oxidation targets peroxiredoxins 1 and 2 for exosomal release through a novel mechanism of redox-dependent secretion

    Get PDF
    Non-classical protein secretion is of major importance as a number of cytokines and inflammatory mediators are secreted via this route. Current evidence indicates that there are several mechanistically distinct methods of non-classical secretion. We have recently shown that peroxiredoxin (Prdx) 1 and Prdx2 are released by various cells upon exposure to inflammatory stimuli such as LPS or TNF-α. The released Prdx then acts to induce production of inflammatory cytokines. However, Prdx1 and 2 do not have signal peptides and therefore must be secreted by alternative mechanisms as has been postulated for the inflammatory mediators IL-1β and HMGB1. We show here that circulating Prdx1 and 2 are present exclusively as disulphide-linked homodimers. Inflammatory stimuli also induce in vitro release of Prdx1 and 2 as disulfide-linked homodimers. Mutation of cysteines Cys51 or Cys172 (but not Cys70) in Prdx2, and Cys52 or Cys173 (but not Cys71 or Cys83) in Prdx1 prevented dimer formation and this was associated with inhibition of their TNF-α-induced release. Thus, the presence and oxidation of key cysteine residues in these proteins are a prerequisite for their secretion in response to TNF-α and this release can be induced with an oxidant. In contrast, the secretion of the nuclear-associated danger signal HMGB1 is independent of cysteine oxidation, as shown by experiments with a cysteine-free HMGB1 mutant. Release of Prdx1 and 2 is not prevented by inhibitors of the classical secretory pathway; instead, both Prdx1 and 2 are released in exosomes from both HEK cells and monocytic cells. Serum Prdx1 and 2 are also associated with the exosomes. These results describe a novel pathway of protein secretion mediated by cysteine oxidation that underlines the importance of redox-dependent signalling mechanisms in inflammation

    Redox proteomics of the inflammatory secretome identifies a common set of redoxins and other glutathionylated proteins released in inflammation, influenza virus infection and oxidative stress

    Get PDF
    Protein cysteines can form transient disulfides with glutathione (GSH), resulting in the production of glutathionylated proteins, and this process is regarded as a mechanism by which the redox state of the cell can regulate protein function. Most studies on redox regulation of immunity have focused on intracellular proteins. In this study we have used redox proteomics to identify those proteins released in glutathionylated form by macrophages stimulated with lipopolysaccharide (LPS) after pre-loading the cells with biotinylated GSH. Of the several proteins identified in the redox secretome, we have selected a number for validation. Proteomic analysis indicated that LPS stimulated the release of peroxiredoxin (PRDX) 1, PRDX2, vimentin (VIM), profilin1 (PFN1) and thioredoxin 1 (TXN1). For PRDX1 and TXN1, we were able to confirm that the released protein is glutathionylated. PRDX1, PRDX2 and TXN1 were also released by the human pulmonary epithelial cell line, A549, infected with influenza virus. The release of the proteins identified was inhibited by the anti-inflammatory glucocorticoid, dexamethasone (DEX), which also inhibited tumor necrosis factor (TNF)-α release, and by thiol antioxidants (N-butanoyl GSH derivative, GSH-C4, and N-acetylcysteine (NAC), which did not affect TNF-α production. The proteins identified could be useful as biomarkers of oxidative stress associated with inflammation, and further studies will be required to investigate if the extracellular forms of these proteins has immunoregulatory functions

    Die Reduktion des aktivierten Sulfates

    No full text
    Anorganisches Sulfat wird als Adenylyl- (APS) und Phosphoadenylylsulfat (PAPS) zu Sulfit reduziert. Trx/Grx:PAPS-Reduktasen\textit {Trx/Grx:PAPS-Reduktasen}: Diese Enzyme reduzieren nur PAPS mit Trx oder Grx als Elektronendonor. Das Redoxzentrum wird von 2 [ECGLH]-Cysteinen des Dimers gebildet. Das Disulfid dieser Cysteine wird direkt vom Redoxin reduziert. Das E0´E^{0}´ wurde mit -162 mV bestimmt. Das Enzym enthält Kupfer (Typ 2). Kupfer-EPR-Signale konnten durch PAPS induziert werden. Eine Erhöhung des Kupferanteils steigerte die spez. Aktivität. Trx:PAPS/APS-Reduktasen\textit {Trx:PAPS/APS-Reduktasen}: Das Protein aus Bacillus subtilis reduziert APS und PAPS mit Trx als Elektronendonor. Das Protein besitzt 4 zusätzliche Cysteine, das Kupfer und ein gelbes Chromophor, das als High-Spin-Eisen+III^{+III} identifiziert wurde. GSH:APS-Reduktasen\textit {GSH:APS-Reduktasen}: Diese pflanzlichen Proteine besitzen eine Trx-ähnliche Domäne. Sie reduzieren APS mit GSH als Elektronendonor. Neben dem Eisen- und Kupfer enthalten sie ein freies Radikal

    Cysteinyl and methionyl redox switches: Structural prerequisites and consequences

    No full text
    Redox modifications of specific cysteinyl and methionyl residues regulate key enzymes and signal-transducing proteins in various pathways. Here, we analyzed the effect of redox modifications on protein structure screening the RCSB protein data bank for oxidative modifications of proteins, i.e. protein disulfides, mixed disulfides with glutathione, cysteinyl sulfenic acids, cysteinyl S-nitrosylation, and methionyl sulfoxide residues. When available, these structures were compared to the structures of the same proteins in the reduced state with respect to both pre-requirements for the oxidative modifications as well as the structural consequences of the modifications. In general, the conformational changes induced by the redox modification are small, i.e. within the range of normal fluctuations. Some redox modifications, disulfides in particular, induces alterations in the electrostatic properties of the proteins. Solvent accessibility does not seem to be a strict pre-requirement for the redox modification of a particular residue. We identified an enrichment of certain other amino acid residues in the vicinity of the susceptible residues, for disulfide and sulfenic acid modifications, for instance, histidyl and tyrosyl residues. These motifs, as well as the specific features of the susceptible sulfur-containing amino acids, may become helpful for the prediction of redox modifications
    corecore