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Abstract: Glutathione (GSH) was initially identified and characterized for its redox properties and
later for its contributions to detoxification reactions. Over the past decade, however, the essential
contributions of glutathione to cellular iron metabolism have come more and more into focus. GSH is
indispensable in mitochondprial iron-sulfur (FeS) cluster biosynthesis, primarily by co-ligating FeS
clusters as a cofactor of the CGFS-type (class II) glutaredoxins (Grxs). GSH is required for the export
of the yet to be defined FeS precursor from the mitochondria to the cytosol. In the cytosol, it is an
essential cofactor, again of the multi-domain CGFS-type Grxs, master players in cellular iron and FeS
trafficking. In this review, we summarize the recent advances and progress in this field. The most
urgent open questions are discussed, such as the role of GSH in the export of FeS precursors from
mitochondria, the physiological roles of the CGFS-type Grx interactions with BolA-like proteins and
the cluster transfer between Grxs and recipient proteins.
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1. Introduction

Glutathione, the y-L-glutamyl-L-cysteinyl-glycine tri-peptide, is a ubiquitous nucleophile required
in redox homeostasis, detoxification, and iron homeostasis [1]. Since the reactivity of glutathione
(GSH) itself with proteins, small molecules, and xenobiotics is too low to be significant in vivo,
see for instance, [2], GSH-dependent reactions need to be catalyzed by enzymes. These enzymes
include glutaredoxins (Grxs), glutathione peroxidases (GPxs), glutathione reductase (GR), glutathione
S-transferases (GSTs), and protein disulfide isomerases (PDIs) [1]. Nevertheless, the functions of
GSH depend on the reactivity of its cysteinyl thiol group. Thiols can complex metals, be alkylated to
thioethers, but they can also be oxidized to disulfides. In the case of glutathione, two molecules of
reduced GSH can be oxidized to form glutathione disulfide (GSSG). Re-reduction is catalyzed by GR
at the expense of NADPH. Being present in millimolar concentrations in most organisms, GSH was
characterized as the “redox buffer” of the cell. In fact, the loss of GSH-utilizing enzymes may result
in disrupted redox homeostasis, as in the case for GPxs [3,4], with effects as dramatic as cell death
by a process named ferroptosis induced by the lack of GPx4 activity [5-7]. The loss of glutathione
itself, however, firstly results in defects in cellular iron homeostasis [8,9]. The enzymes that catalyze or
mediate most glutathione functions in iron metabolism are the iron-sulfur cluster (FeS)-containing Grxs.
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In this review, we will address the functions of both GSH and FeS-Grxs in iron metabolism.
This topic has been addressed before, see for instance [9-12]. The focus of this review is on mammalian
cells, however, we take into account other taxa when discussing ground-breaking and major findings,
both to illustrate the high degree of conservation in the systems as well as some unique aspects.

2. Glutathione, Glutaredoxins, and Iron-Metabolism

As early as 1972, Tanaka and coworkers reported that, in vitro, GSH may be able to complex
iron, resulting in absorption spectra resembling those of FeS clusters [13]. It took nearly two decades
before the essential function of GSH in the synthesis and maturation of FeS cluster proteins in vivo was
discovered in yeast. Defects in the biosynthesis of FeS proteins in Saccharomyces cerevisiae are associated
with a more than two-fold increase of GSH [14]. However, this increase was apparently not caused by
concomitant disturbances in redox metabolism. In fact, the depletion of GSH impaired the maturation
of FeS proteins substantially, most of all affecting the non-mitochondprial FeS proteins [15].

2.1. Iron-Sulfur Cluster Biogenesis

FeS clusters are essential for life. They participate in the transfer of electrons, are cofactors in
enzymatic catalysis, control the stability of biomolecules, and act as regulatory elements [16-18].
Mitochondria are essential for FeS cluster biogenesis. Not only are all the FeS clusters required for
energy conversion synthesized here, the maturation of cytosolic FeS clusters also depends on a yet
to be defined mitochondrial precursor [19,20]. Mitochondrial FeS cluster biogenesis and the cluster
transfer to target apo-proteins have been studied to great detail and reviewed comprehensively before,
e.g., in [21-23]. In brief, Fe;S, centers are synthesized from iron and cysteine-derived sulfur by the
early iron-sulfur cluster (ISC) synthesis machinery. From there, the Fe,S, centers are likely transferred
to the monothiol Grx5 with the aid of a heat shock protein of 70 kDa (Hsp70) chaperone system,
the details of which will be discussed below. In the present models, Grx5 acts as a hub, from which the
FeS centers are (1) either directly, or with the help of additional “targeting factors”, transferred to Fe,S,
target proteins or (2) transferred to a protein complex composed of the assembly factors ISCA1, ISCA2,
and IBA57, where they are combined to Fe4S, centers [24]. Only recently, Lill and co-workers succeeded
in biochemically reconstituting the assembly of FeyS4 clusters [25]. The process requires the ISC
machinery, holo-Grx5, and reduced Fdx2 for the reductive fusion of two Fe;S; clusters into one FesSy4
cluster. These clusters are trafficked by ISC-targeting factors, such as proteins from the BolA family and
iron-sulfur cluster scaffold homolog 1 (NFU1) to apo-target proteins such as the mitochondrial aconitase
(ACO2). The maturation of the Fe;S4 centers in the complex I (NADH-ubiquinone oxidoreductase,
NDUF) subunits NDUFS1, NDUFV1, and NDUFS2, 7, and 8 seems to require the P-loop NTPase Ind1
(iron—sulfur protein required for NADH-dehydrogenase) [26]. The molecular mechanisms of cluster
insertion and the recipient protein pre-requisites are still unclear.

The insertion of FeS proteins into apo-target proteins requires their cysteinyl sulfur ligands to be in
the reduced thiol state. Under normal conditions in yeast mitochondria, this seems to be independent
of the major thiol reducing systems, i.e., the GSH/Grx and thioredoxin (Trx) systems [27]. However,
for mammalian cells and proteins, a number of conditions have been characterized that lead to the
oxidation of such cysteinyl residues, for instance, in complex I subunits NDUFS1 and NDUFV1in a
murine Parkinson’s disease model as a consequence of GSH depletion [28]. In general, GSH appears to
be a crucial factor for complex I activity, especially in neurons [29-31].



Molecules 2020, 25, 3860 3 of 26

From groundbreaking work in yeast cells, it was established that cytosolic FeS biogenesis depends
on a sulfur compound generated inside mitochondpria [32]. This not yet specified sulfur compound (X-S)
must be exported as source for cytosolic FeS cluster synthesis. This compound must be transported into
the cytosol in an ATP-dependent manner. The ATP-binding cassette (ABC) transporter Atm1 (in human
ABCB?), located in the inner mitochondrial membrane, soon came into focus as the prime candidate
for this function [32]. Atm1/ABCB7 may also be the link for the necessity of GSH for the maturation of
cytosolic FeS proteins. Structural analyses revealed a large cavity in the dimeric Atm1 close to the inner
membrane surface that can accommodate GSH [33-35]. In fact, the size of the cavity also allows for
the binding of GSH as part of a larger not yet defined substrate transported by Atm1 [34]. Mutations
in the binding site of ABCB7 that inhibit binding of a GSH moiety result in decreased functions of
cytosolic FeS proteins and mitochondrial iron overload [33,36,37]. The same phenotype is caused by
GSH or Atml depletion in yeast [15]. Atm1 and the Arabidopsis thaliana homolog ATM3 transport
GSSG with increased ATPase activity but neither Fe?* nor reduced GSH stimulate the ATPase activity
of the transporter [38]. Atm1 also transports GS-5-5G (glutathione trisulfide) [38]. Since substantial
data suggest that only a sulfur compound is required as the mitochondrial contribution to cytosolic
FeS biogenesis (for a summary, see [34]), such per- or poly-sulfides are compelling candidates as
endogenous substrates. More recently, however, intact Fe,S, clusters ligated by four GSH molecules
have also been suggested as Atm1 substrate [39]. This is supported by recent kinetic studies that
reported the transport of (GSH)4Fe;S; by Atm1 with a ~100-fold increased activity in the presence of
the cluster [40]. The open questions, in addition to the nature of the transported compound, are the
generation of this GSH derivative(s) from the Grx5/GSH-ligated Fe,S; cluster in mitochondria (see
below) as well as the link to the cytosolic iron sulfur cluster assembly machinery (CIA). In vitro, the
GSH-ligated Fe,S, cluster itself can be used to reconstitute apo-proteins [41].

The biogenesis of cytosolic and nuclear FeS-proteins requires numerous proteins and is facilitated
by the CIA, summarized in [42]. Overall, the process can be divided into two steps. First, a Fe4Sy
cluster is assembled on a scaffold complex. Second, this cluster is transferred and inserted into recipient
apo-proteins. Apart from the yet to be determined component X-S that has to be supplied by the
mitochondrial FeS synthesis machinery, the cytosolic FeS protein biogenesis requires an iron source and
the supply of electrons. The latter are supplied by the NADPH-dependent diflavin oxidoreductase 1
(NDOR1) and the FeS protein anamorsin/CIAPIN1 (see Figure 1) [43-46]. The first step is the assembly
of the Fe45S4 cluster on the cytosolic FeS scaffold complex (see Figure 1) [47-49]. The heterotetrameric
complex consists of two P-loop NTPases, CFD1 (cytosolic FeS cluster-deficient protein 1) and NBP35
(nucleotide-binding protein 35). The complex binds two Fe4Sy clusters, one at the N-terminus of NBP35
and the second one is transiently ligated between CFD1 and NBP35 [50]. The nature and source of the
iron for the formation of this first cytosolic FeS cluster is still unclear. Multi-domain Grxs like yeast or
mammalian Grx3 may be potential candidates. They do play a general role in iron trafficking through
the cytoplasm in a GSH-dependent manner [51,52] (details below). Potentially, they function in concert
with a BolA family protein [10,53-56]. In the second step, the primarily assembled cluster is transferred
and inserted into target proteins. This is facilitated by IOP1 (iron-only hydrogenase-like protein) and
the CIA-targeting complex [57]. IOP1 may acts as a CIA adapter protein, mediating the contact between
early and late parts of the CIA machinery, although the exact mechanism is still under discussion
(see Figure 1) [47,58,59]. Probably, cytosolic iron-sulfur protein assembly protein 1 (CIA1), CIA2b,
and MMS19 (MMS19 nucleotide excision repair protein homolog) build variable hetero-complexes,
called the CIA-targeting complexes, that directly interact with specific cytosolic and nuclear apo-FeS
proteins (see Figure 1) [58,60].
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Figure 1. Glutathione and glutaredoxins in iron-sulfur cluster synthesis and maturation in mammalian
cells. The initial synthesis of Fe,S, clusters is catalyzed by the mitochondrial iron-sulfur cluster
synthesis machinery on the scaffold protein ISCU2. From there, clusters are distributed in a process that
depends on the CGFS-type Grx5 to Fe;S, and Fe4S, target proteins, e.g., in the mitochondrial electron
chain. In addition, a yet to be uncovered compound “X” is exported in a glutathione (GSH)-dependent
manner to the cytosol, where it serves as substrate for the cytosolic iron-sulfur cluster assembly
machinery. The multi-domain CGFS-type Grx3 is in some way required for the distribution of iron
from the so-called labile iron pool to most, if not all, cellular iron-dependent processes. Glutaredoxins
are depicted in light blue, GSH in green, iron in red, and sulfur in yellow.

2.2. Glutaredoxins

Grxs form a branch of the Trx family, for an overview see [61]. Bacterial Grxs represent the
most basic representation of the Trx-fold, consisting of a four-stranded central (3-sheet surrounded by
three «-helices, and Grxs of higher organisms frequently display additional N- and C-terminal helices
(Figure 2). In 1976, the first Grx was defined as a GSH-dependent electron donor for ribonucleotide
reductase (RNR) and thus DNA synthesis [62]. In the following years, Grxs were comprehensively
characterized as oxidoreductases that catalyze the formation and reduction of disulfides, i.e., inter-
and intra-molecular protein disulfides, and with high specificity disulfides between protein thiols
and GSH, i.e., reversible (de-)glutathionylation. For comprehensive reviews on this topic, see for
instance [61,63-67], and for a summary of the characteristics of the human Grxs, see Table 1. In brief,
these redox-active Grxs (CPYC-type or class I Grxs) contain a consensus Cys-Pro-Tyr-Cys active
site motif and catalyze thiol-disulfide exchange reactions in two connected reaction mechanisms.
The formation and reduction of protein disulfides require both active site cysteinyl residues and
(de-)glutathionylation of only the more N-terminal. The mechanisms were thus termed dithiol and
monothiol reaction mechanisms. Both reactions are initiated by a nucleophilic attack of the more
N-terminal cysteinyl residue, which is characterized by a particularly low pK, value < 5 [66,68-70],
on the target disulfide. In the case of the dithiol reaction mechanism, the intermediate disulfide between
the Grx and the target protein is reduced by the more C-terminal cysteinyl residue. The monothiol
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mechanism results in a reduced protein and a disulfide between the Grx and GSH (see Figure 2).
Reduction of the Grx with a disulfide in the active site by GSH results in the same Grx-GSH mixed
disulfide, which can be reduced by another molecule of GSH, completing both reaction cycles.
Both reactions are fully reversible, as Grxs catalyze both the oxidation and reduction of target proteins.
A second class of Grxs came into focus much later. These proteins share the consensus active site motif
Cys-Gly-Phe-Ser, hence CGFS-type or class II Grxs. With few exceptions [71,72], CGFS-type Grxs are
inactive as oxidoreductases. Instead, these proteins function in cellular iron metabolism [10,51,52,73,74],
see below.
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Figure 2. Glutaredoxin reaction mechanisms. Protein disulfides are reduced via a mechanism that
involves both active site cysteinyl residues of the CxxC-type Grxs. A reduced Grx forms a mixed
disulfide with the thiol of a target protein and its N-terminal active site Cys (1). This intermediate is
reduced by the C-terminal active site Cys, releasing the reduced substrate target protein (2). The oxidized
Grx can be sequentially reduced by two molecules of GSH (3+4). A Grx-S-SG mixed disulfide (red)
can easily be formed from reduced Grx and glutathione disulfide (GSSG) in the reverse reaction (4).
Reduced Grx can also catalyze the reversible (de-)glutathionylation of a target protein in a mechanism
that only requires the N-terminal active site Cys (5). Some glutathionylated proteins containing two
adjacent Cys can also oxidize and form an intra-molecular disulfide by releasing GSH (6). GSSG is
reduced to two molecules of GSH by glutathione reductase (GR) at the expense of NADPH.

Table 1. Human glutaredoxins. Abbreviations: c: cytosol, m: mitochondria, n.a.: not available,

n: nucleus.
Protein Name Accession Gene Active Site Functions and Reactions FeS Locali-Zation
Oxidoreductase,

Grx1 P35754 Glrx CPYC (de-)glutathionylation [75,76] no c/n
Oxidoreductase, FeS as redox

Grx2a QINS18 Glrx2 CSYC sensor [16,77,78] Fe,S; m

Grx2b Q9INS18-2 GIrx2 CSYC Not analyzed [77,79] FepS, c/n
Oxidoreductase, FeS as redox

Grx2c n.a. Glrx2 CSYC sensor [16,77,78] Fe,S;y c/n

Grx3 076003 Glrx3 2cGFs TS b“’ge“e[i;' ;B‘]’“ trafficking 5 ko s, c

Grx5 Q865X6 Glrx5 CGFS Fe/S biogenesis [81,82] Fe,S, m

For decades, Grxs were characterized as co-factorless oxidoreductases [67]. It therefore came as a
big surprise when the first two FeS-Grxs were described, Arabidopsis thaliana GrxC1 [83,84] and human
Grx2 [16,85]. In both cases, it turned out that the exchange of the prolyl residue in the CPYC consensus
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active site for a glycyl and seryl residue, respectively, was sufficient to allow cluster ligation [84,85].
The second big surprise was the mode of cluster ligation itself in these proteins. The clusters are
ligated in a dimeric holo-complex at the interface of two hardly interacting Grx monomers [84,86].
The [Fe;S,]** clusters are ligated by the two more N-terminal cysteinyl residues of the active site and
the thiol groups of two non-covalent bound GSH molecules [84-86]. These were the first examples of
FeS clusters co-ligated by GSH. Following these two C(non-P)YC-type Grxs, all CGFS-type Grxs have
been characterized as Fe,S,-proteins, see for instance [10,74,80,81,87]. Both Grx sub-families bind the
FeS cluster in a very similar way at the interface of the dimeric holo-complex, including co-ligation
by GSH. However, one particular feature separates the two groups: the relative orientation of the
Grx monomers in the holo-complex towards each other (Figure 3). Compared to the CGFS-type Grxs,
the position of one monomer in the C(non-P)YC-type Grxs is tilted by approximately 90° toward the
site relative to the other monomer. The sequestration of the N-terminal active site cysteinyl residue
in the holo-complex of the redox-active, yet FeS-binding, Grxs suggests that the cluster serves as a
regulatory mechanism controlling the activity of the proteins, for instance, by increased levels of GSSG
or nitrogen oxide (NO) [16,88], or that it may serve other redox-independent functions [16,89].

Figure 3. Structural comparison of both classes of FeS glutaredoxins. Structures of (a) apo- [PDB:1YKA]
and (b) dimeric CGFS-type holo-Grx4 [PDB:2WCL] from Escherichia coli, CGFS-type human (c) apo-
[PDB:2MMZ] and (d) holo-Grx5 [PDB:2WUL], and CSYC-type human Grx2 in (e) apo- [PDB:2FLS]
and (f) holo-form [PDB:2HT9]. (g) Details of the alternative cluster coordination conformations of
the holo-complexes, CGFS-type Grxs with GSH and active site cysteinyl residue carbon traces in

gray, CSYC-type with carbon traces in green. “A” and “B” refer to the two subunits in the dimeric
holo-complexes composed of the two subunits A and B, two non-covalently bound GSHs and the
bridging Fe,S; cluster.

Although both types of Grxs discussed here share highly similar 3-D structures (see Figure 3),
as well as all elements and residues required to bind GSH [9], they exhibit completely different
activities—oxidoreductase versus transferase. The mechanistic basis for this profound difference
was the subject of many investigations and speculations [81,87,90,91], until two studies recently
characterized the molecular basis of their distinct activity profiles [92,93]. In brief, the key determinants
of their function are unique loop structures just before the active site. The engineering of a CxxC-type
Grx with a CGFS-type loop switched its function from oxidoreductase to FeS transferase in a zebrafish
model and the introduction of a CxxC-type loop into a CGFS-type Grx abolished its FeS transferase
activity and activated the oxidative half-reaction (Figure 2, reaction 5 reverse) of the oxidoreductase [92].
The reductive half-reaction, requiring the interaction with the second GSH molecule (Figure 2, reaction 4),
is dependent on further elements, characterized in detail in [93]. Together, these studies explain how
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subtle structural differences determine the diverse Grx functions. An overview of the different classes
of Grxs in different species is depicted in Figure 4.
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Figure 4. Glutaredoxins in different species. Presence and subcellular localization of Grxs in Escherichia
coli, Saccharomyces cerevisiae, Danio rerio, humans, and Arabidopsis thaliana. CGFS-type Grxs are depicted
in light blue, CxxC-type in dark blue. The domain structures, active site sequences, and the ability to
form FeS cluster-bridged holo-complexes are indicated.
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2.2.1. Vertebrate- and Mammalian-Specific Glutaredoxin 2

Before it was described as an FeS protein, human Grx2 was characterized as a redox-active Grx
with the ability to reduce mixed disulfides and effectively (de-)glutathionylate target proteins [79,94,95].
The human GLRX2 gene consists of five exons, including two alternative first exons (Ia and Ib) leading
to three transcript variants. The core domain of Grx2, including the active site, is encoded by exon II-IV.
GLRX2_v1 (exon la-II-III-IV) encodes the ubiquitously expressed Grx2a, including a mitochondrial
targeting sequence. GLRX2_v2 and v3 are products of the alternative splice donor sites of exon Ib,
encoding the nuclear and cytosolic isoforms Grx2b and Grx2c. The expression of Grx2b and Grx2c is
restricted to the testis in adult human tissues, but has also been demonstrated in various cancer cell
lines [77]. In contrast, the mouse GLRX2 gene consists of six exons, three constitutive exons (II, 11I,
IV), two alternative first exons (Ia, Ib), and one single cassette exon. Five transcript variants encode
three protein isoforms. The mitochondrial Grx2a and the nuclear/cytosolic Grx2c are conserved from
mouse to human. Testis-specific Grx2d is unique to mouse [96]. Grx2 shares 34% sequence homology
with Grx1 and a CSYC active site motif, with the exchange of the prolyl for a seryl residue [79,94].
This altered active site sequence results in an increased affinity for glutathionylated proteins and it
can be reduced by either GSH or thioredoxin reductase, combining characteristics of Trxs and Grxs.
Dimeric inactive holo-Grx2 bridges an FeS cluster. Degradation of the cluster in oxidative conditions,
e.g., a more oxidized glutathione pool, results in monomeric active Grx2, indicating a function as
a redox sensor in vivo [16]. Monomerization and cluster disassembly can cause lipid peroxidation,
a drop in mitochondrial membrane potential, and eventually cell death [97]. The mitochondrial Grx2a
was shown to participate in the maintenance of the redox equilibrium under conditions that promote
oxidative damage to mitochondrial proteins. Especially for cells over-expressing Grx2a, protective
functions have been described [88,98,99]. Grx2a over-expression decreased susceptibility towards
apoptosis induced by doxorubicin (DOX) [100]. Grx2 is essential for mitochondrial morphology and
dynamics in cardiomyocytes in humans and mice [101]. The loss of mitochondrial Grx2 is connected to
increased mitochondrial proton leaks and respiration in muscle cells [102]. Genomes of other vertebrate
species, e.g., zebrafish, contain genes encoding homologs to the cytosolic Grx2 isoform. This cytosolic
zfGrx2 is essential for brain development. Zebrafish with silenced expression of cytosolic Grx2 lose
essentially all types of neurons by apoptotic cell death and fail to develop an axonal scaffold. Only the
re-introduction of wildtype Grx2c could rescue the defects, but not in either of the redox-inactive
active site mutants [103]. The over-expression of Grx2c in SH-SY5Y neuroblastoma cells during
retinoic acid-induced differentiation increases axon length and the number of branching points by
up to two-fold [103]. Cytosolic Grx2 also has an essential function for the vascular development and
maintenance of cardiovascular function [104,105]. Zebrafish lacking cytosolic Grx2 have an impaired
heart looping and defects in heart functionality due to a failed migration of cardiac neural crest
cells [106]. This heart looping defect could be rescued by introduction of the active site mutant of
zfGrx2 that is still able to catalyze monothiol mechanism reactions [106]. Grx2c also has an essential
function in spermatogenesis, a process that includes the migration of spermatogenic cells through
the close Sertoli cell formation [77]. Recent results indicate a correlation between Grx2c expression
and cancer-specific survival in clear cell renal cell carcinoma patients [107]. In a proteomic approach,
Schiitte et al. were able to identify target proteins, e.g., collapsin response mediator protein (CRMP) 2,
that undergoes thiol-disulfide exchange reactions catalyzed by Grx2 [108]. In models of Parkinson’s
disease, the depletion of glutathione resulted in a dose-dependent Grx2 inhibition and, similar to gene
silencing of Grx2, decreased iron incorporation into complex I and ACO2. The loss of Grx2 function
also led to the activation of iron regulatory protein (IRP1), resulting in the increase in the iron uptake
protein transferrin receptor, decreased levels of the iron storage protein ferritin, and mitochondrial
iron accumulation. In the cytosol, the loss of Grx2 resembled iron starvation conditions.
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2.2.2. Glutaredoxin 5

Human Grxb5 is one of the central proteins in the mitochondrial ISC machinery, as well as in cluster
trafficking and, therefore, iron homeostasis [109,110]. In humans, the maturation of mitochondrial
FeS cluster-containing proteins can be divided into different steps. First, the initial Fe,S; cluster is
assembled on the iron-sulfur cluster enzyme ISCU (ISCU2) and involves at least 17 characterized
proteins [111]. The human ISCU2-M140I variant can overcome the loss of frataxin. However, this is
not by restoring its function in cluster assembly, but rather by the acceleration of cluster transfer from
ISCU2 to Grx5 [112]. The release and transfer of the Fe;S, cluster is facilitated by Hsp70 chaperones [22].
Chaperone binding enhanced the ATP-dependent cluster transfer from E. coli IscU in vitro [113].
In S. cerevisiae, the ATPase activity of the chaperone increased by Isul binding but not by interaction
with Grx5. The association of Isul, Grx5, and the chaperone is required for cluster transfer from Isul
to Grx5 [114]. A study published in 2018, however, contradicted these findings by showing a cluster
transfer from ISCU to Grx5 only in the absence of the human mitochondrial Hsp70 chaperones HSPA9
and HSC20 [115]. However, this study completely relied on in vitro data with assay times up to two
hours, and therefore the results were mainly subjected to thermodynamic restrictions rather than
physiological constraints.

Together with Grx5, ISCA1 and ISCA2 are proteins involved in the assembly of Fe,Sy4 clusters [22].
Until recently, only very slow rates of cluster transfer from Grx5 to ISCA1 and ISCA2 were demonstrated
in vitro. Although new insights were provided by the structure of the ISCA2-IBA57 complex [10,11],
the reductive fusion of the two Fe;S, clusters to one Fe;Sy4 cluster has only recently been reported [25].
BolA-like proteins, more precisely BolAl and BolA3, were also suggested to interact with Grx5 in
the assembly of Fe,S4 and possibly Fe,S; clusters, as summarized, e.g., in [22]. Both human BolAl
and BolA3, interact with apo- and holo-Grx5 to form hetero-clusters with different affinities as shown
in in vivo and in vitro studies [116,117]. NMR, EPR, CD, and UV/vis spectroscopy were utilized
to characterize and identify differences in the nature of the clusters bound in the BolA1-Grx5 and
BolA3-Grx5 hetero-complexes [118].

The loss of Grx5 disrupts FeS assembly on target proteins and leads to mitochondrial iron
overload [19,114]. In Schizosaccharomyces pombe, Grx5 depletion also led to a decrease in mitochondrial
DNA [119]. Additionally, in S. cerevisiae, an iron-dependent increased rRNA degradation was observed
upon Grx5 depletion due to iron overload [120]. In zebrafish, a lack of Grx5 led to the activation of IRP1
and blocked heme biosynthesis [121]. The first step in this pathway is catalyzed by aminolaevulinate
synthase 2 (ALAS2). The over-expression of ALAS2 RNA without the iron response element regulated
by IRP1 rescued the zebrafish embryos, while the expression of ALAS2, including the iron response
element, did not [121]. Human patients with decreased levels of Grx5 develop iron overload and
sideroblastic-like microcytic anemia [82,109].

The mechanisms of cluster transfer in the mitochondrial FeS cluster machinery, as well as to target
proteins, remain to be revealed. Over the years, many studies have been published proposing cluster
transfer between proteins that are clearly involved in the mitochondrial FeS cluster synthesis pathway,
but they have relied solely on in vitro data (e.g., [115]). As mentioned above, these sorts of in vitro
studies are restricted by thermodynamics and do not take physiological conditions nor enzymatic
catalysis into account. An example of how this leads in an unavailing direction can be found for
CSYC-type Grx2. Also located in the mitochondria, Grx2 complexes an FeS cluster [16]. In contrast
to Grx5 depletion, the loss of Grx2 does not impair ISC biogenesis or transfer but leads to defects,
e.g., in brain and heart development [103,106]. In vivo Grx2 and Grx5 display completely different
functions in redox regulation and iron homeostasis, respectively. However, it was published that
in vitro human Grx2 transferred its FeS cluster to human ferredoxin (Fdx1) (see Table 2 and Figure 5)
with an apparent second-order rate constant of 1160 + 200 M1 min~! [122]. An essential reaction
that takes more than 60 min is far away from being physiological and would be inconsonant with the
human lifespan.
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Table 2. FeS cluster transfer reactions analyzed in vitro. Abbreviations: A.v.: Azotobacter vinelandii, H.s.: Homo sapiens, P.: Populus tremodus, S.c.: Saccharomyces cerevisiae,

S.p.: Schizosaccharomyces pombe, Syn.: Synechocystis sp.

Donor Acceptor Additional Factors Transfer Rate (M~1 min~1) Method Assay Time (min) Ref.
1360 + 110
[FexS,1(GS)4 S.c. Grx3 1600 + 450 CD 30 [41]
2153 + 281

[FexS,1(GS)4 H.s. BolA1 H.s. Grx5 DTT 60,000 + 1200 CD 30 [123]
[FexS,1(GS)4 H.s. BolA3 H.s. Grx5 DIT 28,000 + 2800 CD 30 [124]
[FexS,1(GS)4 H.s. BolA3 S.c. Grx3 DTT 29,000 + 3000 CD 30 [124]
H.s. Grx2 H.s. Fdx1 GSH 1160 + 200 CD 60 [122]
H.s. Grx3 H.s. Ciapinl UV-Vis [125]
H.s. Grx3 H.s. Ciapinl BolA2 CD, UV-Vis [56]
H.s. Grx5 H.s. IscU DITI]SH,C%?)T{AE’?MESCIEQI 7500 + 2300 CD 60 [115]
H.s. Grx5 H.s. IscU D37A DTT, GSH 3500 + 500 CD 58 [115]
H.s. Grx5 H.s. Nful DTT, GSH 950 + 450 CD 118 [115]
H.s. Grx5 H.s. Nful DTT, GSH, BolA3 CD, UV-Vis, NMR [126]
H.s. Grx5 H.s. Fdx1 DTT, GSH 2000 + 700 CD 120 [115]
H.s. Grx5 H.s. Fdx2 DTT, GSH 650 + 250 CD 120 [115]
H.s. Grx5 H.s. ISCA1/ISCA2 DTT, GSH NMR 9-48 h [127]
H.s. Grx5 H.s. ISCA2 DTT, GSH NMR 9-48 h [127]
H.s. Grx5 H.s. ISCA2 C79S DTT, GSH NMR 9-48 h [127]
H.s. ISCA1 H.s. BolAl, H.s. Grx5 DTT, GSH CD 60 [123]
H.s. ISCA2 H.s. BolA1, H.s. Grx5 DTT, GSH CD 60 [123]
H.s. ISCU H.s. BolA1, H.s. Grx5 DTT, GSH 3600 =+ 400 CD 60 [123]
H.s. ISCU H.s. BolA3, S.c. Grx3 DTT, GSH 4600 + 870 CD 60 [124]
H.s. ISCU H.s. BolA3, H.s. Grx5 DTT, GSH 14,000 + 1000 CD 60 [124]
H.s. ISCU H.s. Grx5 DTT, GSH 10,300 + 1800 CD 10 [115]
H.s. ISCU S.c. Grx3 GSH 3370 + 200 CD 60 [128]
H.s. Nfu H.s. Grx5 DTT, GSH 35,100 + 2000 CD 60 [129]
H.s. Nfu H.s. Grx2 GSH 2000 + 150 CD 60 [122]
H.s. Nfu S.c. Grx3 GSH 36,200 + 7700 CD 60 [128]
H.s. Nfu S.c. Grx3 DTHECGZSOI,_IAI";IP,SI\/I[; SCPf:‘g’ 34,400 + 4500 CD 60 [129]
H.s. Nful H.s. BolA3, S.c. Grx3 DTT, GSH CD 60 [124]
H.s. Nful H.s. BolA3, H.s. Grx5 DTT, GSH CD 60 [124]
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Table 2. Cont.
Donor Acceptor Additional Factors Transfer Rate (M~1 min—1) Method Assay Time (min) Ref.
H.s. BolAl H.s. Grx5 H.s. Fdx1 DTT, GSH CD 60 [123]
H.s. BolAl H.s. Grx5 H.s. Fdx2 DTT, GSH CD 60 [123]
H.s. BolA1l H.s. Grx5 H.s. ISCA1 DTT, GSH CD 60 [123]
H.s. BolAl H.s. Grx5 H.s. ISCA2 DTT, GSH CD 60 [123]
H.s. BolA3 S.c. Grx3 H.s. Fdx1 DTT, GSH 1800 + 170 CD 60 [124]
H.s. BolA3 S.c. Grx3 H.s. Fdx2 DTT, GSH 2600 + 540 CD 60 [124]
H.s. BolA3 S.c. Grx3 H.s. Nful DTT, GSH CD 60 [124]
H.s. BolA3 H.s. Grx5 H.s. Fdx1 DTT, GSH 1400 + 140 CD 60 [124]
H.s. BolA3 H.s. Grx5 H.s. Fdx2 DTT, GSH 2800 + 380 CD 60 [124]
H.s. BolA3 H.s. Grx5 H.s. Nful DTT, GSH CD 60 [124]
S.c. Grx3 H.s. Fdx1 GSH 2100 + 500 CD 60 [122]
S.c. Grx3 H.s. Fdx2 GSH 695 + 138 CD 240 [122]
S.c. Grx3 A.v. IscA >50,000 CD 10 [130]
S.p. Isal S.c. Grx3 GSH 6200 + 1900 CD 60 [122]
A.v. Grx5 A.v. Fdx DTT 2100 CD 160 [131]
A.v. Grx5 A.v. IscA 22,000 CD 10 [130]
A.v. IscA S.c. Fra2-Grx3 15,000 CD 120 [130]
A.v. IscU A.v. Grx5 GSH 30 CD 180 [131]
A.v. HscA, A.v. HesB, MgCl,,
A.v. IscU A.v. Grx5 ATP, KCl 20,000 CD 60 [131]
A.t. GrxS14 A.v. IscA >50,000 CD 10 [130]
A.t. GrxS14 A.t. SufAl >50,000 CD 10 [130]
A.t. GrxS15 A.t. (mito)Fdx1 Native PAGE [132]
P. GrxS14 Syn. Fdx 20,000 CD ~60 [74]

11 of 26
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Figure 5. FeS cluster transfer reactions analyzed in vitro to date. This figure summarizes all in vitro
cluster transfer reactions analyzed and described in the literature. The directions of the reactions are
indicated by arrows. The origin of the different proteins used in the analyses, i.e., the species that
encodes the respective protein, is color coded, as displayed in the top left corner. For details and
references, see Table 2.
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2.2.3. Multi-Domain Glutaredoxins, Glutaredoxin 3

Multi-domain Grxs are unique to eukaryotic cells. They consist of an N-terminal, normally redox
inactive, and a Trx domain followed by one to three CGFS-type Grx domains, each of which can complex
the GSH co-ligated Fe;S, cluster in dimeric complexes. The yeast Saccharomyces cerevisiae expresses
two closely related multi-domain Grxs containing a single CGFS-type Grx domain each, Grx3 and
Grx4. Two major functions, both central for iron metabolism, were characterized for these proteins:
(1) Grx3 and Grx4 have a central role in intra-cellular iron trafficking and sensing. The depletion of
Grx3/4 specifically impaired all iron-requiring reactions in the cytosol, mitochondria, and nucleus,
including the synthesis of FeS clusters, heme, and di-iron centers, such as in RNR (see Figure 1).
The cells failed to insert iron into target proteins, as well as to deliver iron to mitochondria. Iron was
simply not bio-available in the absence of the proteins [51] and (2) the availability of iron to form the
FeS-bridged holo-complexes of Grx3 and 4 is used as sensor for the iron state of fungal cells. Extensive
analyses of S. cerevisize and S. pombe have uncovered unique mechanisms that control iron metabolism
in different fungi, summarized recently in [11]. The common thread in these regulatory mechanisms
are the multi-domain CGFS-type Grxs that interact, often together with BolA-type proteins (see below),
with transcription factors dependent on the iron state of the cell, thus controlling the transcription of
proteins and enzymes that take part in, or control, iron metabolism. For detailed discussion on this
topic, see for instance [10,11,133,134].

Vertebrate-specific Grx3, also known as protein kinase C-interacting cousin of thioredoxin
(PICOT), TXNL-2, and HUSSY-22, contains two C-terminal CGFS-type Grx domains [66,135,136].
Grx3 is ubiquitously expressed [80,137], the protein can complex two Fe;S, clusters at the interfaces
between the two CGFS-type Grx domains in a homo-dimeric holo-complex, and it binds iron in vivo [80].
The depletion of Grx3 in zebrafish embryos primarily affected hemoglobin maturation. The loss of
Grx3 function did not affect globin biosynthesis, and instead heme did not mature [52]. This was likely
caused by the loss of an essential FeS cluster in the enzyme ferrochelatase that catalyzes the final step
in heme maturation, iron insertion [138]. Gene silencing of Grx3 in cells of human origin (HeLa cells)
induced a phenotype resembling an iron starvation phenotype despite the sufficient bio-available iron.
The protein levels of several cytosolic FeS proteins were altered, for instance, IRP1 and glutamine
phosphoribosylpyrophosphate amidotransferase (GPAT). The protein levels of ferritin were decreased
and the levels of the transferrin receptor increased, indicating the activation of IRP1. Apparently,
the Grx3-depleted cells were unable to use iron efficiently, indicating a central role for Grx3 in iron
metabolism [52] similar to the one described in yeast [51], i.e., a function in cellular iron trafficking.
The molecular base of this function and how it relates to the observed defects in FeS protein maturation
in the cytosol of eukaryotic cells is still unknown.

Human Grx3 was initially identified as an interaction partner of protein kinase C 6 and is
associated with various signaling pathways that lead to the activation of cells [136]. Grx3 is essential
during development, the loss of Grx3 in mice resulted in embryonic death between E12.5 and E14.5,
without apparent defects in organogenesis [139]. Grx3~/~ embryos did not exhibit obvious histological
abnormalities, however, the embryos were reported to be of smaller body size and developed
hemorrhages in the head [139,140]. It is noteworthy that the time point of embryonic death, E12.5,
also marks the onset of definitive erythropoiesis in the fetal liver [141,142] and, from this point on,
erythropoesis is the major iron-consuming process. Grx3 can protect from cardiac hypertrophy in animal
models. Grx3 protein levels were increased in these models and heterozygous Grx3*/~ mice were more
vulnerable to developing cardiac hypertrophy, in contrast to wildtype mice [139,140]. Disturbances
in iron metabolism have also been linked to cardiac pathologies. For instance, in Friedreich’s ataxia
patients, the (partial) loss of the FeS cluster biogenesis protein frataxin (Figure 1) causes mitochondrial
iron overload and defects in mitochondrial FeS maturation, summarized in [23,143]. These defects
frequently cause cardiomyopathy and cardiac hypertrophy [144]. To date, however, it is unclear
whether the role of Grx3 in cardiac hypertrophy is connected to its role in iron metabolism.
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2.3. Grxs and BolA-Like Proteins

Both genetic and biochemical evidence link BolA-like proteins to iron metabolism and to CGFS-type
Grxs in particular [10,145]. It was hypothesized that both proteins interact in the transfer of FeS clusters
to targeting complexes or recipient proteins. This is supported by a number of in vitro and structural
studies [118]. Unlike the CGFS-type Grxs, BolA-like proteins from different species show a high degree
of heterogeneity and a low degree of conservation, including some of the residues that were suggested
to take part in the ligation of FeS clusters in both homo- and hetero-dimeric holo-complexes.

In S. cerevisiae, the regulation of iron metabolism by the transcription factors activator of iron
transcription protein (Aft) 1 and Aft2 depends on the Grx3/Grx4 siblings and the proteins Fe repressor
of activation (Fra) 1 and Fra2, for summaries, see [10,11]. Fra2 is BolA-like protein also known as
BolA2. The Fe;S, cluster in the hetero-dimeric complex between Grx3/4 and Fra2 is complexed by the
Grx3/4 active site CGFS cysteinyl residue, a Fra2 histidyl residue, one GSH, and another ligand that is
not a histidyl residue and remains elusive [146,147]. The conserved His103 residue is not required
for hetero-dimer formation and cluster binding in vitro, but influences cluster stability [146]. In vitro
studies described a cluster transfer between Grx3-Bol2 and Aft2, involving a ligand exchange mechanism
and a specific protein—protein interaction that requires Aft2 Cys187 [148,149]. Cluster binding appeared
to be more stable in the hetero-dimeric complex compared to Grx3/4 homo-dimers, although removal
of this cluster did not disrupt the Grx3-Fra2 hetero-dimer, raising the question of whether it functions
as an FeS scaffold or iron sensing protein [147]. In the proposed iron sensing mechanism in S. pombe,
an FeS cluster is transferred from the transcription factor iron-sensing transcription factor 1 (Fep1) to
Grx4-Fra2 in response to iron starvation, thereby activating gene expression to increase the intra-cellular
iron pool [150].

The holo-complex of the human multi-domain CGFS-type Grx3 bridges two Fe,S, clusters
with four GSHs and its two conserved CGFS motifs [80]. In 2012, Li et al. demonstrated that
human Grx3 forms a heterotrimeric complex with human BolA2 in vitro, and this was confirmed
by Banci et al. [53,56]. As in yeast, cysteinyl and histidyl residues of Grx3 and BolA2, respectively,
were proposed to be involved in cluster coordination [53,56]. In contrast to yeast, however, in vivo
data supporting this interaction and a physiological role of this hetero-trimeric complex remain to
be presented. In vitro data suggested more stable Fe,S; clusters in the hetero-trimeric compared to
the Grx3 homo-dimeric complexes, as observed in yeast. Nevertheless, a role of the BolA2-Grx3
complex in Fe,S; cluster transfer in the cytosolic FeS protein maturation pathway was proposed [56].
Cluster transfer from homo-dimeric Grx3 to CIAPIN1 (also named anamorsin, see Figures 1 and 5)
was demonstrated, the specific interactions between the two were proposed as key mechanisms
in anamorsin maturation [125]. However, the hetero-complex with BolA2 was also reported to be
able to transfer both bridging Fe;S, clusters to CIAPIN1/anamorsin in vitro, and thus a function
as an FeS cluster transfer component in the cytosolic FeS protein biogenesis was suggested [56].
The siRNA-mediated silencing of Grx3 induces an iron starvation phenotype in HeLa cells [52].
However, the silencing of BolA2 expression not only failed to induce a similar phenotype, but the
co-silencing of Grx3 and BolA2 rescued the iron starvation phenotype to some degree (unpublished
own data). These results imply an antagonistic rather than joint function of cytosolic Grx3 and BolA2.
This fragmentary puzzle of information and results remains to be solved.

Mitochondria of eukaryotic cells usually harbor the CGFS-type Grx5 and two BolA-like proteins,
BolA1 and BolA3, both of which can form hetero FeS-bridged complexes with Grx5. Uzarska et al.
demonstrated that human apo-Grx5 and BolA1 or BolA3 also specifically interact in chemical shift
assays [114]. This interaction involves the location surrounding the invariant histidyl residue in the
BolAs and the GSH-binding site in Grx5 [117]. Complex holo-models suggest that Grx5-BolA3 undergo
significant structural rearrangement upon dimer formation and FeS cluster binding (Figure 6) [118].
In the loop connecting (-strand 1 and 2 of BolA3, the Cys 59 residue moves towards the invariant
C-terminal His 96 and coordinates the Fe,S, together with the active site and GSH thiols of Grx5.
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The complex with BolA1, on the other hand, seems to not involve structural re-arrangements and has a
different orientation [118] (Figure 6).

Figure 6. Structural rearrangements in Grx5 and BolA upon dimer formation. (a) Superimposition
of the backbone structure of human apo-Grx5 [PDB:2WUL] (yellow) and human BolA3 [PDB: 2NCL]
(cyan) with the Fe,;S, BolA3-Grx5 complex backbone structure (red). (b) Superimposition of the
backbone structure of human apo-Grx5 [PDB:2WUL] (yellow) and human BolA1 [PDB:5LCI] (dark
gray) with the Fe;S, BolA1-Grx5 complex backbone structure (red). The GSH molecule and the Fe,S;
cluster are represented as balls and sticks. The invariant C-terminal His (His 96 in BolA3 and His 102 in
BolA1), His 67 in BolAl, Cys 59 in BolA3, and Cys 67 in human Grx5 residues are shown.

In vivo and in vitro studies suggest specialized functions of yeast mitochondrial Boll and Bol3
in the same pathway, i.e., FeS protein maturation in mitochondria. The over-expression of Grx5
increases the BolA1l level but there is no effect on BolA3 [116]. BolAl interacts with Grx5 via
the Fe,S; cluster, whereas BolA3 interacts with Nful in the FesSy cluster assembly, although the
detailed mechanisms remain unsolved [116,117]. Yeast cells lacking BolA1 and BolA3 show defects in
Fe,S4 enzymes, e.g., aconitase and lipoic acid synthase [116,151]. The interaction of the two human
mitochondrial BolA-like proteins, BolA1l and BolA3, and Grx5 was characterized by a number of
in vitro techniques [117]. Conserved histidyl residues (His102 in BolA1 and His96 in BolA3) and
other potential cluster ligands, e.g., histidyl and cysteinyl residues in BolA1 and BolA3, respectively,
are involved in hetero-dimeric cluster formation [10,117]. A reduced Rieske-type Fe,S; cluster is
coordinated by Grx5 and BolA1 with high affinity, whereas the oxidized, Fdx-like cluster of Grx5 and
BolA3 is labile and BolA3 preferably interacts with Nful [117,118]. Based solely on in vitro studies,
Sen et al. concluded the contrary—a significant BolA3-Grx5 interaction and a weak BolA3-Nful
interaction [124]. Two BolA3-Grx5 hetero-complexes can transfer their Fe,S; clusters to Nful to form a
Fe4S, cluster in FeS protein maturation [126]. A role in cluster trafficking was ruled out for BolA1-Grx5
because of its structurally buried cluster and the lack of transfer efficiency to common Fe,S; cluster
acceptors, such as ferredoxins [123]. Patients with mutations in the Grx5 or the BolA3 gene suffer from
variations of nonketotic hyperglycinemia with decreased lipoylation, likely caused by interruption of
the cluster transfer pathway to the FeS protein lipoate synthase [110]. The physiological role of BolAl
and BolA3 in complex with Grx5 remains elusive. For more comprehensive summaries of the topic,
we refer to [10,54,111].

2.4. FeS Cluster Transfer Reactions

CGFS-type Grxs and BolA-like proteins have been suggested to cooperate in the transfer of FeS
clusters to target proteins and targeting protein complexes [53]. A number of studies, summarized in
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Table 2 and Figure 5, have addressed such transfer reactions in vitro, mostly utilizing differences in
the absorption or circular dichroism of the holo-complexes of target and recipient proteins. In brief,
the combined in vitro data on these cluster transfer reactions can be summarized as follows: it appears
that Fe;S; clusters can be transferred between most proteins that have the ability to ligate them,
independent of the physiological significance of these interactions and phylogenetics. The reactions are
reversible and seem to primarily follow thermodynamic constrains. So far, evidence for the requirement
of any form of catalysis has only been demonstrated for the transfer of the Fe;S, cluster built in
the initial scaffold ISCU to the Grx5 homolog of Azotobacter vinelandii in the form of the HscA/HscB
chaperone system [131]. The rate constants, especially of the reactions regarded as physiologically
significant, are generally low, in the range of 0.1-1.7-10' M~! s71. Astonishingly, some of the highest rate
constants have been reported for cluster transfer reactions between proteins that cannot be considered
physiologically meaningful, e.g., from human Nfu (mitochondrial) to S. cerevisiae Grx3 (cytosolic) with
6-102 M1 s~ [122], or from S. cerevisine Grx3 to Azotobacter vinelandii ISCA at >8.3-102 M1 s~1 [130].
In vitro, human Grx2, a CSYC-type Grx, can transfer its cluster to Fdx1 with similar (low) rates as
CGFS-type Grx5, i.e., 1910 M~ s71 and 3.3 10 M1 571, respectively, summarized in Table 2 and
Figure 5. In vivo, however, due to its different quaternary structure, the ubiquitously expressed [77]
mitochondrial Fe,S;-Grx2a cannot compensate for the iron deficiency phenotype caused by Fe;S,-Grx5
depletion or loss, in neither zebrafish [82] nor in humans [82,109]. With respect to the role of the
BolA-like proteins, no in vitro study so far has demonstrated that these proteins are strictly required
for the transfer of FeS clusters from Grxs to any other protein or vice versa, nor that their presence
would enhance the rate constants of the transfer reaction. To date, in vitro studies have not provided
conclusive evidence on the nature of the efficiency, nor the specificity in cluster transfer reactions
observed in vivo.

3. Other Glutathione-Iron Complexes

Dinitrosyl-iron complexes (DINICs) are the derivative of nitric oxide (NO), iron, and other ligands.
They play a crucial role in stabilization, storage, and NO bio-activity [152]. The electron paramagnetic
resonance (EPR) signal at g = 2.03 is a characteristic feature of DINICs and was identified in vivo in
animal tissues and other organisms [153]. In general, DINICs are formed by the attachment of anionic
ligands to an Fe(NO); nucleus. One common ligand of these centers is the thiolate of glutathione (GS™).
Depending on the number of iron-nitrosyl nuclei attached to the ligand(s), both mono- and bi-nuclear
DINICs are formed [154]. Under physiological conditions, mononuclear thiol-ligated DINICs appear
to be in equilibrium with binuclear DINICs of the Roussin’s red salt thioether type [155]. FeS proteins
may be the major source of protein-bound DINICs as demonstrated in E. coli when -NO directly reacts
with the FeS clusters [156]. -NO may also react with superoxide (O,7), yielding peroxynitrite (ONOO™)
that can react with proteins, inducing carbonylation and nitration [61]. In a recent study, we provided
evidence that FeS5-Grx2 can inhibit ONOO~ formation in cells by the reaction of its GSH co-ligated FeS
cluster with -NO, yielding glutathionyl-DINICs [88]. Such glutathionyl-DINICs may biologically be the
most significant form. For instance, they may play an important role in protein S-nitrosylation (S-NO).

Various studies and reviews have reported the formation of S-NOs invivo, see for
instance [157-160]. It is often described as the product of the reaction of the -NO radical with thiol
groups. However, this reaction as such cannot take place unless one electron is removed, e.g., by a
metal/enzyme catalyst [161].

NO + R-SH — R-5-NO + e~ 1)

Glutathionyl-DINICs can release nitrosonium ions (NO¥) that can react with GSH to form
GS-NO [162]. This NO* moiety can be transferred to other thiols by a nucleophilic attack on the
electrophilic nitrogen atom of GS-NO—a process known as protein trans-nitrosylation [163].

GS-NO + R’-SH — GSH + R’-S-NO @)
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The thiol peroxidases peroxiredoxin 1 (Prx1) is S-nitrosylated in mammalian cells [164].
This reaction is mediated by glutathionyl-DINICs and involves the reactive peroxidatic cysteinyl
residue in the active site of Prx1. The reaction affects the reactivity of the protein and thus its enzymatic
and signaling functions [165].

DINICs complexed with glutathione may also be of interest for therapeutic applications [153].
They might serve also as -NO donors to regulate the muscle tonus around the vasculature [152] and
have already been successfully tested as hypotensive drugs in clinical trials [166]. The stability of
DINICs can be increased through their interaction with proteins [153]. For example, cysteinyl residues
in serum albumin can modulate and prolong the vasodilating activity of glutathionyl-DINICs [152].
It is noteworthy that these DINICs do not seem to affect the cellular glutathione levels, nor cellular
proliferation [167]. They are not toxic to HeLa cells [168] and they increase the viability of fibroblasts
and rat caridiomyocytes [167,169]. Glutathionyl-DINICs were also reported to accelerate skin wound
healing, to inhibit apoptosis, and to suppress endometriosis [9,170]. Inheart infarction models, treatment
reduced the size of the infarction zone and inhibited platelet aggregation [171,172]. In summary,
treatment with glutahionyl-DINICS may develop into new therapeutic strategies.

4. Conclusions and Outlook

The past decade has seen some remarkable progress in our understanding of the role of GSH
and Grxs in iron metabolism, particularly with respect to the synthesis and maturation of FeS
proteins. Promising steps have been made towards re-building functional FeS transfer and targeting
complexes in vitro. We have reached a molecular understanding of the factors that determine the
GSH-dependent oxidoreductase and FeS scaffold functions of Grxs. With the unraveling of the yeast
Grx3/4-Fra2-mediated regulation of iron homeostasis in yeast, we have been presented with the first
well-characterized physiological function of a Grx-BolA hetero-complex. However, a number of urgent
open questions remain to be answered. They include, without claiming completeness:

What is the role of GSH in the export of FeS precursors from mitochondria to the cytosolic
FeS assembly machinery? What compound is exported and what is the source of iron for cytosolic
FeS maturation?

Outside the well-established yeast Aft regulon, what are the physiological roles of the CGFS-type
Grx interactions with BolA-like proteins? Are these interactions essential for mitochondrial and/or
cytosolic FeS maturation and transfer reactions? Do (more) of these complexes function in iron sensing?

What is the mechanism of cluster transfer between Grxs and recipient proteins? What are the
factors that ensure both the specificity and efficiency of the reactions in vivo that we are apparently
missing in vitro to date?
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