26 research outputs found

    Multiple gas-phase conformations of proline-containing peptides: is it always cis/trans isomerization?

    No full text
    Ion mobility-mass spectrometry (IM-MS) is often employed to look at the secondary, tertiary, and quaternary structures of naked peptides and proteins in the gas-phase. Recently, it has offered a unique glimpse into proline-containing peptides and their cis/trans Xxx-Pro isomers. An experimental "signature" has been identified wherein a proline-containing peptide has its Pro residues substituted with another amino acid and the presence or absence of conformations in the IM-MS spectra is observed. Despite the high probability that one could attribute these conformations to cis/trans isomers, it is also possible that cis/trans isomers are not the cause of the additional conformations in proline-containing peptides. However, the experimental evidence of such a system has not been demonstrated or reported. Herein, we present the IM-MS analysis of Neuropeptide Y's wild-type (WT) signal sequence and Leu7Pro (L7P) mutant. Although comparison of arrival times and collision cross-sections of [M + 4H](4+) ions yields the cis/trans "signature", molecular dynamics indicates that a cis-Pro7 is not very stable and that trans-Pro7 conformations of the same cross-section arise with equal frequency. We believe that this work further underscores the importance of theoretical calculations in IM-MS structural assignments.11Nsciescopu

    Site-Specific Characterization of d‑Amino Acid Containing Peptide Epimers by Ion Mobility Spectrometry

    No full text
    Traditionally, the d-amino acid containing peptide (DAACP) candidate can be discovered by observing the differences of biological activity and chromatographic retention time between the synthetic peptides and naturally occurring peptides. However, it is difficult to determine the exact position of d-amino acid in the DAACP candidates. Herein, we developed a novel site-specific strategy to rapidly and precisely localize d-amino acids in peptides by ion mobility spectrometry (IMS) analysis of mass spectrometry (MS)-generated epimeric fragment ions. Briefly, the d/l-peptide epimers were separated by online reversed-phase liquid chromatography and fragmented by collision-induced dissociation (CID), followed by IMS analysis. The epimeric fragment ions resulting from d/l-peptide epimers exhibit conformational differences, thus showing different mobilities in IMS. The arrival time shift between the epimeric fragment ions was used as criteria to localize the d-amino acid substitution. The utility of this strategy was demonstrated by analysis of peptide epimers with different molecular sizes, [d-Trp]-melanocyte-stimulating hormone, [d-Ala]-deltorphin, [d-Phe]-achatin-I, and their counterparts that contain all-l amino acids. Furthermore, the crustacean hyperglycemia hormones (CHHs, 8.5 kDa) were isolated from the American lobster Homarus americanus and identified by integration of MS-based bottom-up and top-down sequencing approaches. The IMS data acquired using our novel site-specific strategy localized the site of isomerization of l- to d-Phe at the third residue of the CHHs from the N-terminus. Collectively, this study demonstrates a new method for discovery of DAACPs using IMS technique with the ability to localize d-amino acid residues

    Evaluation and Application of Dimethylated Amino Acids as Isobaric Tags for Quantitative Proteomics of the TGF-β/Smad3 Signaling Pathway

    No full text
    Isobaric labeling has become a widespread tool for quantitative proteomic studies. Here, we report the development and evaluation of several dimethylated amino acids as novel isobaric tags for quantitative proteomics. Four-plex dimethylated alanine (DiAla), valine (DiVal), and leucine (DiLeu) have been synthesized, sharing common features of peptide tagging and reporter ion production. DiAla and DiLeu are shown to achieve complete labeling. These two tags’ impacts on peptide fragmentation and quantitation are further evaluated using HEK293 cell lysate. DiAla labeling generates more abundant backbone fragmentation whereas DiLeu labeling produces more intense reporter ions. Nonetheless, both tags enable accurate quantitative analysis of HEK293 cell proteomes. DiAla and DiLeu tags are then applied to study the TGF-β/Smad3 pathway with four differentially treated mouse vascular smooth muscle (MOVAS) cells. Our MS data reveal proteome-wide changes of AdSmad3 as compared to the GFP control, consistent with previous findings of causing smooth muscle cell (SMC) dedifferentiation. Additionally, the other two novel mutations on the hub protein Smad3, Y226A, and D408H, show compromised TGF-β/Smad3-dependent gene transcription and reversed phenotypic switch. These results are further corroborated with Western blotting and demonstrate that the novel DiAla and DiLeu isobaric tagging reagents provide useful tools for multiplex quantitative proteomics
    corecore