85 research outputs found

    Microprocessor, Setx, Xrn2, and Rrp6 Co-operate to Induce Premature Termination of Transcription by RNAPII

    Get PDF
    SummaryTranscription elongation is increasingly recognized as an important mechanism of gene regulation. Here, we show that microprocessor controls gene expression in an RNAi-independent manner. Microprocessor orchestrates the recruitment of termination factors Setx and Xrn2, and the 3′–5′ exoribonuclease, Rrp6, to initiate RNAPII pausing and premature termination at the HIV-1 promoter through cleavage of the stem-loop RNA, TAR. Rrp6 further processes the cleavage product, which generates a small RNA that is required to mediate potent transcriptional repression and chromatin remodeling at the HIV-1 promoter. Using chromatin immunoprecipitation coupled to high-throughput sequencing (ChIP-seq), we identified cellular gene targets whose transcription is modulated by microprocessor. Our study reveals RNAPII pausing and premature termination mediated by the co-operative activity of ribonucleases, Drosha/Dgcr8, Xrn2, and Rrp6, as a regulatory mechanism of RNAPII-dependent transcription elongation

    Viral genetic variation accounts for a third of variability in HIV-1 set-point viral load in Europe

    Get PDF
    HIV-1 set-point viral load-the approximately stable value of viraemia in the first years of chronic infection-is a strong predictor of clinical outcome and is highly variable across infected individuals. To better understand HIV-1 pathogenesis and the evolution of the viral population, we must quantify the heritability of set-point viral load, which is the fraction of variation in this phenotype attributable to viral genetic variation. However, current estimates of heritability vary widely, from 6% to 59%. Here we used a dataset of 2,028 seroconverters infected between 1985 and 2013 from 5 European countries (Belgium, Switzerland, France, the Netherlands and the United Kingdom) and estimated the heritability of set-point viral load at 31% (CI 15%-43%). Specifically, heritability was measured using models of character evolution describing how viral load evolves on the phylogeny of whole-genome viral sequences. In contrast to previous studies, (i) we measured viral loads using standardized assays on a sample collected in a strict time window of 6 to 24 months after infection, from which the viral genome was also sequenced; (ii) we compared 2 models of character evolution, the classical "Brownian motion" model and another model ("Ornstein-Uhlenbeck") that includes stabilising selection on viral load; (iii) we controlled for covariates, including age and sex, which may inflate estimates of heritability; and (iv) we developed a goodness of fit test based on the correlation of viral loads in cherries of the phylogenetic tree, showing that both models of character evolution fit the data well. An overall heritability of 31% (CI 15%-43%) is consistent with other studies based on regression of viral load in donor-recipient pairs. Thus, about a third of variation in HIV-1 virulence is attributable to viral genetic variation.Peer reviewe

    Phylogenetic estimation of the viral fitness landscape of HIV-1 set-point viral load

    Full text link
    Set-point viral load (SPVL), a common measure of human immunodeficiency virus (HIV)-1 virulence, is partially determined by viral genotype. Epidemiological evidence suggests that this viral property has been under stabilising selection, with a typical optimum for the virus between 104^{4} and 105^{5} copies of viral RNA per ml. Here we aimed to detect transmission fitness differences between viruses from individuals with different SPVLs directly from phylogenetic trees inferred from whole-genome sequences. We used the local branching index (LBI) as a proxy for transmission fitness. We found that LBI is more sensitive to differences in infectiousness than to differences in the duration of the infectious state. By analysing subtype-B samples from the Bridging the Evolution and Epidemiology of HIV in Europe project, we inferred a significant positive relationship between SPVL and LBI up to approximately 105^{5} copies/ml, with some evidence for a peak around this value of SPVL. This is evidence of selection against low values of SPVL in HIV-1 subtype-B strains, likely related to lower infectiousness, and perhaps a peak in the transmission fitness in the expected range of SPVL. The less prominent signatures of selection against higher SPVL could be explained by an inherent limit of the method or the deployment of antiretroviral therapy

    Phylogenetic estimation of the viral fitness landscape of HIV-1 set-point viral load

    Get PDF
    Set-point viral load (SPVL), a common measure of human immunodeficiency virus (HIV)-1 virulence, is partially determined by viral genotype. Epidemiological evidence suggests that this viral property has been under stabilising selection, with a typical optimum for the virus between 104 and 105 copies of viral RNA per ml. Here we aimed to detect transmission fitness differences between viruses from individuals with different SPVLs directly from phylogenetic trees inferred from whole-genome sequences. We used the local branching index (LBI) as a proxy for transmission fitness. We found that LBI is more sensitive to differences in infectiousness than to differences in the duration of the infectious state. By analysing subtype-B samples from the Bridging the Evolution and Epidemiology of HIV in Europe project, we inferred a significant positive relationship between SPVL and LBI up to approximately 105 copies/ml, with some evidence for a peak around this value of SPVL. This is evidence of selection against low values of SPVL in HIV-1 subtype-B strains, likely related to lower infectiousness, and perhaps a peak in the transmission fitness in the expected range of SPVL. The less prominent signatures of selection against higher SPVL could be explained by an inherent limit of the method or the deployment of antiretroviral therapy.Peer Reviewe

    Easy and accurate reconstruction of whole HIV genomes from short-read sequence data with shiver

    Get PDF
    Studying the evolution of viruses and their molecular epidemiology relies on accurate viral sequence data, so that small differences between similar viruses can be meaningfully interpreted. Despite its higher throughput and more detailed minority variant data, next-generation sequencing has yet to be widely adopted for HIV. The difficulty of accurately reconstructing the consensus sequence of a quasispecies from reads (short fragments of DNA) in the presence of large between-and within-host diversity, including frequent indels, may have presented a barrier. In particular, mapping (aligning) reads to a reference sequence leads to biased loss of information; this bias can distort epidemiological and evolutionary conclusions. De novo assembly avoids this bias by aligning the reads to themselves, producing a set of sequences called contigs. However contigs provide only a partial summary of the reads, misassembly may result in their having an incorrect structure, and no information is available at parts of the genome where contigs could not be assembled. To address these problems we developed the tool shiver to pre-process reads for quality and contamination, then map them to a reference tailored to the sample using corrected contigs supplemented with the user's choice of existing reference sequences. Run with two commands per sample, it can easily be used for large heterogeneous data sets. We used shiver to reconstruct the consensus sequence and minority variant information from paired-end short-read whole-genome data produced with the Illumina platform, for sixty-five existing publicly available samples and fifty new samples. We show the systematic superiority of mapping to shiver's constructed reference compared with mapping the same reads to the closest of 3,249 real references: median values of 13 bases called differently and more accurately, 0 bases called differently and less accurately, and 205 bases of missing sequence recovered. We also successfully applied shiver to whole-genome samples of Hepatitis C Virus and Respiratory Syncytial Virus. shiver is publicly available from https://github.com/ChrisHIV/shiver.Peer reviewe

    A highly virulent variant of HIV-1 circulating in the Netherlands

    Get PDF
    We discovered a highly virulent variant of subtype-B HIV-1 in the Netherlands. One hundred nine individuals with this variant had a 0.54 to 0.74 log(10) increase (i.e., a similar to 3.5-fold to 5.5-fold increase) in viral load compared with, and exhibited CD4 cell decline twice as fast as, 6604 individuals with other subtype-B strains. Without treatment, advanced HIV-CD4 cell counts below 350 cells per cubic millimeter, with long-term clinical consequences-is expected to be reached, on average, 9 months after diagnosis for individuals in their thirties with this variant. Age, sex, suspected mode of transmission, and place of birth for the aforementioned 109 individuals were typical for HIV-positive people in the Netherlands, which suggests that the increased virulence is attributable to the viral strain. Genetic sequence analysis suggests that this variant arose in the 1990s from de novo mutation, not recombination. with increased transmissibility and an unfamiliar molecular mechanism of virulence

    Viral Load Levels Measured at Set-Point Have Risen Over the Last Decade of the HIV Epidemic in the Netherlands

    Get PDF
    HIV-1 RNA plasma concentration at viral set-point is associated not only with disease outcome but also with the transmission dynamics of HIV-1. We investigated whether plasma HIV-1 RNA concentration and CD4 cell count at viral set-point have changed over time in the HIV epidemic in the Netherlands.We selected 906 therapy-naĂŻve patients with at least one plasma HIV-1 RNA concentration measured 9 to 27 months after estimated seroconversion. Changes in HIV-1 RNA and CD4 cell count at viral set-point over time were analysed using linear regression models. The ATHENA national observational cohort contributed all patients who seroconverted in or after 1996; the Amsterdam Cohort Studies (ACS) contributed seroconverters before 1996. The mean of the first HIV-1 RNA concentration measured 9-27 months after seroconversion was 4.30 log(10) copies/ml (95% CI 4.17-4.42) for seroconverters from 1984 through 1995 (n = 163); 4.27 (4.16-4.37) for seroconverters 1996-2002 (n = 232), and 4.59 (4.52-4.66) for seroconverters 2003-2007 (n = 511). Compared to patients seroconverting between 2003-2007, the adjusted mean HIV-1 RNA concentration at set-point was 0.28 log(10) copies/ml (95% CI 0.16-0.40; p<0.0001) and 0.26 (0.11-0.41; p = 0.0006) lower for those seroconverting between 1996-2002 and 1984-1995, respectively. Results were robust regardless of type of HIV-1 RNA assay, HIV-1 subtype, and interval between measurement and seroconversion. CD4 cell count at viral set-point declined over calendar time at approximately 5 cells/mm(3)/year.The HIV-1 RNA plasma concentration at viral set-point has increased over the last decade of the HIV epidemic in the Netherlands. This is accompanied by a decreasing CD4 cell count over the period 1984-2007 and may have implications for both the course of the HIV infection and the epidemic

    Has the Rate of CD4 Cell Count Decline before Initiation of Antiretroviral Therapy Changed over the Course of the Dutch HIV Epidemic among MSM?

    Get PDF
    Introduction:Studies suggest that the HIV-1 epidemic in the Netherlands may have become more virulent, leading to faster disease progression if untreated. Analysis of CD4 cell count decline before antiretroviral therapy (ART) initiation, a surrogate marker for disease progression, may be hampered by informative censoring as ART initiation is more likely with a steeper CD4 cell count decline.Methods:Development of CD4 cell count from 9 to 48 months after seroconversion was analyzed using a mixed-effects model and 2 models that jointly modeled CD4 cell counts and time to censoring event (start ART
    • …
    corecore