28 research outputs found
Decreased hydrocortisone sensitivity of T cell function in multiple sclerosis-associated major depression
Multiple sclerosis (MS) is an inflammatory, demyelinating disease of the CNS with a high prevalence of depression. Both MS and depression have been linked to elevated cortisol levels and inflammation, indicating disturbed endocrine-immune regulation. An imbalance in mineralocorticoid versus glucocorticoid signaling in the CNS has been proposed as a pathogenetic mechanism of depression. Intriguingly, both receptors are also expressed in lymphocytes, but their role for ‘escape’ of the immune system from endocrine control is unknown. Using steroid sensitivity of T cell function as a read-out system, we here investigate a potential role of mineralocorticoid receptor (MR) versus glucocorticoid receptor (GR) regulation in the immune system as a biological mechanism underlying MS-associated major depression. Twelve female MS patients meeting diagnostic criteria for current major depressive disorder (MDD) were compared to twelve carefully matched MS patients without depression. We performed lymphocyte phenotyping by flow cytometry. In addition, steroid sensitivity of T cell proliferation was tested using hydrocortisone as well as MR (aldosterone) and GR (dexamethasone) agonists. Sensitivity to hydrocortisone was decreased in T cells from depressed MS patients. Experiments with agonists suggested disturbed MR regulation, but intact GR function. Importantly, there were no differences in lymphocyte composition and frequency of T cell subsets, indicating that the differences in steroid sensitivity are unlikely to be secondary to shifts in the immune compartment. To our knowledge, this study provides first evidence for altered steroid sensitivity of T cells from MS patients with comorbid MDD possibly due to MR dysregulation
Physiological Correlates of Volunteering
We review research on physiological correlates of volunteering, a neglected but promising research field. Some of these correlates seem to be causal factors influencing volunteering. Volunteers tend to have better physical health, both self-reported and expert-assessed, better mental health, and perform better on cognitive tasks. Research thus far has rarely examined neurological, neurochemical, hormonal, and genetic correlates of volunteering to any significant extent, especially controlling for other factors as potential confounds. Evolutionary theory and behavioral genetic research suggest the importance of such physiological factors in humans. Basically, many aspects of social relationships and social activities have effects on health (e.g., Newman and Roberts 2013; Uchino 2004), as the widely used biopsychosocial (BPS) model suggests (Institute of Medicine 2001). Studies of formal volunteering (FV), charitable giving, and altruistic behavior suggest that physiological characteristics are related to volunteering, including specific genes (such as oxytocin receptor [OXTR] genes, Arginine vasopressin receptor [AVPR] genes, dopamine D4 receptor [DRD4] genes, and 5-HTTLPR). We recommend that future research on physiological factors be extended to non-Western populations, focusing specifically on volunteering, and differentiating between different forms and types of volunteering and civic participation
The glucocorticoid receptor: Pivot of depression and of antidepressant treatment?
Hyperactivity of the hypothalamus–pituitary–adrenal (HPA) axis and increased levels of glucocorticoid hormones in patients with depression have mostly been ascribed to impaired feedback regulation of the HPA axis, possibly caused by altered function of the receptor for glucocorticoid hormones, the glucocorticoid receptor (GR). Antidepressants, in turn, ameliorate many of the neurobiological disturbances in depression, including HPA axis hyperactivity, and thereby alleviate depressive symptoms. There is strong evidence for the notion that antidepressants exert these effects by modulating the GR. Such modulations, however, can be manifold and range from regulation of receptor expression to post-translational modifications, which may result in differences in GR nuclear translocation and GR-dependent gene transcription. The idea that the therapeutic action of antidepressants is mediated, at least in part, by restoring GR function, is consistent with studies showing that decreased GR function contributes to HPA axis hyperactivity and to the development of depressive symptoms. Conversely, excessive glucocorticoid signalling, which requires an active GR, is associated with functional impairments in the depressed brain, especially in the hippocampus, where it results in reduced neurogenesis and impaired neuroplasticity. In this review, we will focus on the GR as a key player in the precipitation, development and resolution of depression. We will discuss potential explanations for the apparent controversy between glucocorticoid resistance and the detrimental effects of excessive glucocorticoid signalling. We will review some of the evidence for modulation of the GR by antidepressants and we will provide further insight into how antidepressants may regulate the GR to overcome depressive symptoms
Glucocorticoids, cytokines and brain abnormalities in depression
Major depression (MD) is a common psychiatric disorder with a complex and multifactor aetiology. Potential mechanisms associated with the pathogenesis of this disorder include monoamine deficits, hypothalamic-pituitary-adrenal (HPA) axis dysfunctions, inflammatory and/or neurodegenerative alterations. An increased secretion and reactivity of cortisol together with an altered feedback inhibition are the most widely observed HPA abnormalities in MD patients. Glucocorticoids, such as cortisol, are vital hormones that are released in response to stress, and regulate metabolism and immunity but also neuronal survival and neurogenesis. Interestingly depression is highly prevalent in infectious, autoimmune and neurodegenerative diseases and at the same time, depressed patients show higher levels of pro-inflammatory cytokines. Since communication occurs between the endocrine, immune and central nervous system, an activation of the inflammatory responses can affect neuroendocrine processes, and vice versa. Therefore, HPA axis hyperactivity and inflammation might be part of the same pathophysiological process: HPA axis hyperactivity is a marker of glucocorticoid resistance, implying ineffective action of glucocorticoid hormones on target tissues, which could lead to immune activation; and, equally, inflammation could stimulate HPA axis activity via both a direct action of cytokines on the brain and by inducing glucocorticoid resistance. In addition, increased levels of pro-inflammatory cytokines also induce the production of neurotoxic end products of the tryptophan–kynurenine pathway. Although the evidence for neurodegeneration in MD is controversial, depression is comorbid with many other conditions where neurodegeneration is present. Since several systems seem to be involved interacting with each other, we cannot unequivocally accept the simple model that glucocorticoids induce neurodegeneration, but rather that elevated cytokines, in the context of glucocorticoid resistance, are probably the offenders. Chronic inflammatory changes in the presence of glucocorticoid resistance may represent a common feature that could be responsible for the enhanced vulnerability of depressed patients to develop neurodegenerative changes later in life. However, further studies are needed to clarify the relative contribution of glucocorticoids and inflammatory signals to MD and other disorders
Recommended from our members
Perspective on equitable translational studies and clinical support for an unbiased inclusion of the LGBTQIA2S+community.
Research regarding the mental health of the Lesbian, Gay, Bisexual, Transgender, Queer, Intersex, Asexual, 2 Spirit (LGBTQIA2S+) community has been historically biased by individual and structural homophobia, biphobia, and transphobia, resulting in research that does not represent the best quality science. Furthermore, much of this research does not serve the best interests or priorities of LGBTQIA2S + communities, despite significant mental health disparities and great need for quality mental health research and treatments in these populations. Here, we will highlight how bias has resulted in missed opportunities for advancing understanding of mental health within LGBTQIA2S + communities. We cite up-to-date research on mental health disparities facing the LGBTQIA2S + community and targeted treatment strategies, as well as guidance from health care professionals. Importantly, research is discussed from both preclinical and clinical perspectives, providing common language and research priorities from a translational perspective. Given the rising tide of anti-transgender sentiment among certain political factions, we further emphasize and discuss the impact of historical and present day ciscentrism and structural transphobia in transgender mental health research, from both clinical and translational perspectives, with suggestions for future directions to improve the quality of this field. Finally, we address current best practices for treatment of mental health issues in this community. This approach provides an opportunity to dispel myths regarding the LGBTQIA2S + community as well as inform the scientific community of best practices to work with this community in an equitable manner. Thus, our approach ties preclinical and clinical research within the LGBTQIA2S + community
Role for the kinase SGK1 in stress, depression, and glucocorticoid effects on hippocampal neurogenesis
Stress and glucocorticoid hormones regulate hippocampal neurogenesis, but the molecular mechanisms mediating these effects are poorly understood. Here we identify the glucocorticoid receptor (GR) target gene, serum- and glucocorticoid-inducible kinase 1 (SGK1), as one such mechanism. Using a human hippocampal progenitor cell line, we found that a small molecule inhibitor for SGK1, GSK650394, counteracted the cortisol-induced reduction in neurogenesis. Moreover, gene expression and pathway analysis showed that inhibition of the neurogenic Hedgehog pathway by cortisol was SGK1-dependent. SGK1 also potentiated and maintained GR activation in the presence of cortisol, and even after cortisol withdrawal, by increasing GR phosphorylation and GR nuclear translocation. Experiments combining the inhibitor for SGK1, GSK650394, with the GR antagonist, RU486, demonstrated that SGK1 was involved in the cortisol-induced reduction in progenitor proliferation both downstream of GR, by regulating relevant target genes, and upstream of GR, by increasing GR function. Corroborating the relevance of these findings in clinical and rodent settings, we also observed a significant increase of SGK1 mRNA in peripheral blood of drug-free depressed patients, as well as in the hippocampus of rats subjected to either unpredictable chronic mild stress or prenatal stress. Our findings identify SGK1 as a mediator for the effects of cortisol on neurogenesis and GR function, with particular relevance to stress and depression
Glucocorticoid-Related Molecular Signaling Pathways Regulating Hippocampal Neurogenesis
Stress and glucocorticoid hormones regulate hippocampal neurogenesis, but the molecular mechanisms underlying their effects are unknown. We, therefore, investigated the molecular signaling pathways mediating the effects of cortisol on proliferation, neuronal differentiation, and astrogliogenesis, in an immortalized human hippocampal progenitor cell line. In addition, we examined the molecular signaling pathways activated in the hippocampus of prenatally stressed rats, characterized by persistently elevated glucocorticoid levels in adulthood. In human hippocampal progenitor cells, we found that low concentrations of cortisol (100 nM) increased proliferation (+16%), decreased neurogenesis into microtubule-associated protein 2 (MAP2)-positive neurons (−24%) and doublecortin (Dcx)-positive neuroblasts (−21%), and increased differentiation into S100β-positive astrocytes (+23%). These effects were dependent on the mineralocorticoid receptor (MR) as they were abolished by the MR antagonist, spironolactone, and mimicked by the MR-agonist, aldosterone. In contrast, high concentrations of cortisol (100 μM) decreased proliferation (−17%) and neuronal differentiation into MAP2-positive neurons (−22%) and into Dcx-positive neuroblasts (−27%), without regulating astrogliogenesis. These effects were dependent on the glucocorticoid receptor (GR), blocked by the GR antagonist RU486, and mimicked by the GR-agonist, dexamethasone. Gene expression microarray and pathway analysis showed that the low concentration of cortisol enhances Notch/Hes-signaling, the high concentration inhibits TGFβ-SMAD2/3-signaling, and both concentrations inhibit Hedgehog signaling. Mechanistically, we show that reduced Hedgehog signaling indeed critically contributes to the cortisol-induced reduction in neuronal differentiation. Accordingly, TGFβ-SMAD2/3 and Hedgehog signaling were also inhibited in the hippocampus of adult prenatally stressed rats with high glucocorticoid levels. In conclusion, our data demonstrate novel molecular signaling pathways that are regulated by glucocorticoids in vitro, in human hippocampal progenitor cells, and by stress in vivo, in the rat hippocampus
Glucocorticoid exposure during hippocampal neurogenesis primes future stress response by inducing changes in DNA methylation
Prenatal stress exposure is associated with risk for psychiatric disorders later in life. This may be mediated in part via enhanced exposure to glucocorticoids (GCs), which are known to impact neurogenesis. We aimed to identify molecular mediators of these effects, focusing on long-lasting epigenetic changes. In a human hippocampal progenitor cell (HPC) line, we assessed the short- and long-term effects of GC exposure during neurogenesis on messenger RNA (mRNA) expression and DNA methylation (DNAm) profiles. GC exposure induced changes in DNAm at 27,812 CpG dinucleotides and in the expression of 3,857 transcripts (false discovery rate [FDR] = 1.15). HPC expression and GC-affected DNAm profiles were enriched for changes observed during human fetal brain development. Differentially methylated sites (DMSs) with GC exposure clustered into 4 trajectories over HPC differentiation, with transient as well as long-lasting DNAm changes. Lasting DMSs mapped to distinct functional pathways and were selectively enriched for poised and bivalent enhancer marks. Lasting DMSs had little correlation with lasting expression changes but were associated with a significantly enhanced transcriptional response to a second acute GC challenge. A significant subset of lasting DMSs was also responsive to an acute GC challenge in peripheral blood. These tissue-overlapping DMSs were used to compute a polyepigenetic score that predicted exposure to conditions associated with altered prenatal GCs in newborn's cord blood DNA. Overall, our data suggest that early exposure to GCs can change the set point of future transcriptional responses to stress by inducing lasting DNAm changes. Such altered set points may relate to differential vulnerability to stress exposure later in life.Peer reviewe