1,564 research outputs found

    Value at Risk models with long memory features and their economic performance

    Get PDF
    We study alternative dynamics for Value at Risk (VaR) that incorporate a slow moving component and information on recent aggregate returns in established quantile (auto) regression models. These models are compared on their economic performance, and also on metrics of first-order importance such as violation ratios. By better economic performance, we mean that changes in the VaR forecasts should have a lower variance to reduce transaction costs and should lead to lower exceedance sizes without raising the average level of the VaR. We find that, in combination with a targeted estimation strategy, our proposed models lead to improved performance in both statistical and economic terms

    Forest Views: Shifting Attitudes Toward the Environment in Northeast Oregon

    Get PDF
    This brief reports on a telephone survey conducted in fall 2014 as part of the ongoing Communities and Forests in Oregon (CAFOR) project. CAFOR focuses on seven counties in the Blue Mountains of northeast Oregon (Baker, Crook, Grant, Umatilla, Union, Wallowa, and Wheeler), where the landscape and local livelihoods are changing in interconnected ways. In an effort to inform policy development around natural resource management, the study seeks to understand how public perceptions of climate change and forest management intersect. Authors Angela Boag, Joel Hartter, Lawrence Hamilton, Forrest Stevens, Mark Ducey, Michael Palace, Nils Christoffersen, and Paul Oester report that 65 percent of those surveyed believe that forests are less healthy than they were twenty years ago. Approximately half of residents support increased user fees to improve forest health on federal land, and a majority believes that climate change is happening, although opinion is split between those who believe it is human-caused and those who believe it is caused by natural forces. The authors conclude that innovative economic and policy solutions are needed across the Inland West to help people and forests regain a strong and productive relationship that both supports livelihoods and sustains working landscapes

    Does it matter if people think climate change is human caused?

    Get PDF
    There is a growing consensus that climate is changing, but beliefs about the causal factors vary widely among the general public. Current research shows that such causal beliefs are strongly influenced by cultural, political, and identity-driven views. We examined the influence that local perceptions have on the acceptance of basic facts about climate change. We also examined the connection to wildfire by local people. Two recent telephone surveys found that 37% (in 2011) and 46% (in 2014) of eastern Oregon (USA) respondents accept the scientific consensus that human activities are now changing the climate. Although most do not agree with that consensus, large majorities (85–86%) do agree that climate is changing, whether by natural or human causes. Acceptance of anthropogenic climate change generally divides along political party lines, but acceptance of climate change more generally, and concerns about wildfire, transcend political divisions. Support for active forest management to reduce wildfire risks is strong in this region, and restoration treatments could be critical to the resilience of both communities and ecosystems. Although these immediate steps involve adaptations to a changing climate, they can be motivated without necessarily invoking human-caused climate change, a divisive concept among local landowners

    Nanoscale Analysis of Space-Weathering Features in Soils from Itokawa

    Get PDF
    Space weathering alters the spectral properties of airless body surface materials by redden-ing and darkening their spectra and attenuating characteristic absorption bands, making it challenging to characterize them remotely [1,2]. It also causes a discrepency between laboratory analysis of meteorites and remotely sensed spectra from asteroids, making it difficult to associate meteorites with their parent bodies. The mechanisms driving space weathering include mi-crometeorite impacts and the interaction of surface materials with solar energetic ions, particularly the solar wind. These processes continuously alter the microchemical and structural characteristics of exposed grains on airless bodies. The change of these properties is caused predominantly by the vapor deposition of reduced Fe and FeS nanoparticles (npFe(sup 0) and npFeS respectively) onto the rims of surface grains [3]. Sample-based analysis of space weathering has tra-ditionally been limited to lunar soils and select asteroidal and lunar regolith breccias [3-5]. With the return of samples from the Hayabusa mission to asteroid Itoka-wa [6], for the first time we are able to compare space-weathering features on returned surface soils from a known asteroidal body. Analysis of these samples will contribute to a more comprehensive model for how space weathering varies across the inner solar system. Here we report detailed microchemical and microstructal analysis of surface grains from Itokawa

    Nanoscale Mineralogy and Composition of Experimental Regolith Agglutinates Produced under Asteroidal Impact Conditions

    Get PDF
    On the Moon, the energetics of smaller impactors and the physical/chemical characteristics of the granular regolith target combine to form a key product of lunar space weathering: chemically reduced shock melts containing optically-active nanophase Fe metal grains (npFe0) [1]. In addition to forming the optically dark glassy matrix phase in lunar agglutinitic soil particles [1], these shock melts are becoming increasingly recognized for their contribution to optically active patina coatings on a wide range of exposed rock and grain surfaces in the lunar regolith [2]. In applying the lessons of lunar space weathering to asteroids, the potential similarities and differences in regolith-hosted shock melts on the Moon compared to those on asteroids has become a topic of increasing interest [3,4]. In a series of impact experiments performed at velocities applicable to the asteroid belt [5], Horz et al. [6] and See and Horz [7] have previously shown that repeated impacts into a gabbroic regolith analog target can produce melt-welded grain aggregates morphologically very similar to lunar agglutinates [6,7]. Although these agglutinate-like particles were extensively analyzed by electron microprobe and scanning electron microscopy (SEM) as part of the original study [7], a microstructural and compositional comparison of these aggregates to lunar soil agglutinates at sub-micron scales has yet to be made. To close this gap, we characterized a representative set of these aggregates using a JEOL 7600 field-emission scanning electron microscope (FE-SEM), and JEOL 2500SE field-emission scanning transmission electron microscope (FE-STEM) both optimized for energy dispersive X-ray spectroscopy (EDX) compositional spectrum imaging at respective analytical spatial resolutions of 0.5 to 1 micron, and 2 to 4 nm

    Effect of maturational timing on bone health in male adolescent athletes engaged in different sports: The PRO-BONE study

    Get PDF
    This is the author accepted manuscript. the final version is available from Elsevier via the DOI in this recordObjectives: To describe differences in bone outcomes according to biological age in male athletes participating in osteogenic (OS) or non-osteogenic (NOS) sports. Design: Longitudinal (12-months). Methods: 104 adolescents (12–14 years) were measured at baseline and after 1y: OS group (n = 37 football or soccer players) and NOS group (n = 39 swimmers, n = 28 cyclists). Years from peak height velocity (PHV, −2 to +2) was used as a maturational landmark. Bone mineral content (BMC) was assessed using DXA. Hip structural analysis estimated cross-sectional area (CSA), cross-sectional moment of inertia (CSMI) and section modulus (Z) at the femoral neck (FN). Trabecular bone score (TBS) estimated lumbar spine (LS) texture. Quantitative ultrasound measured bone stiffness. Multilevel regression models adjusted by hours of training were fitted. Results: Compared to NOS, OS had significantly greater total body (less head) BMC from PHV to +2 years from PHV (from 9.5% to 11.3%, respectively); LS BMC from −1 years from PHV to PHV (from 9.8% to 9.9%); hip BMC (from 11.6% to 22.9%), FN BMC (from 12.0% to 15.9%), TBS (from 4.2% to 4.8%) and stiffness index (from 11.9% to 23.3%) from −1 years from PHV to +2 years from PHV; and CSA (from 8.4% to 18.8%), Z (from 5.5% to 22.9%) and CSMI (from 10.6% to 23.3%) from −2 years from PHV to +2 years from PHV. There was a significant trend for the between-group differences to increase with biological age except for LS BMC and TBS. Conclusions: These findings underline the differential bone response to different sports throughout the years surrounding PHV in male adolescent athletes. Clinical trial registration: ISRCTN17982776.European Union Seventh Framework ProgrammeUniversity of Castilla-La ManchaUniversity of Granad

    Self-stresses and Crack Formation by Particle Swelling in Cohesive Granular Media

    Full text link
    We present a molecular dynamics study of force patterns, tensile strength and crack formation in a cohesive granular model where the particles are subjected to swelling or shrinkage gradients. Non-uniform particle size change generates self-equilibrated forces that lead to crack initiation as soon as strongest tensile contacts begin to fail. We find that the coarse-grained stresses are correctly predicted by an elastic model that incorporates particle size change as metric evolution. The tensile strength is found to be well below the theoretical strength as a result of inhomogeneous force transmission in granular media. The cracks propagate either inward from the edge upon shrinkage and outward from the center upon swelling

    Clay Sediments from Basaltic Terrains: Implications for Sedimentary Processes on Mars

    Get PDF
    The Mars Science Laboratory (MSL) rover, Curiosity, has been traversing across fluvial, lacustrine, and eolian sedimentary rocks since it touched down in 2012. The CheMin X-ray diffractometer (XRD) on board Curiosity has revealed smectite clay minerals in most fluvio-lacustrine samples and abundant X-ray amorphous materials in all samples analyzed to date. For example, mudstones from the Sheepbed member at the base of the stratigraphic section and the lower part of the Murray formation contain on average ~7 to 20 wt% smectite and ~30 to 46 wt% X-ray amorphous abundances. On Earth, smectite and secondary X-ray amorphous materials are juvenile weathering products that are generated in sedimentary environments and ultimately record the interaction between primary igneous minerals and the hydrosphere, atmosphere, and biosphere. For this study, we investigated glacio-fluvio-eolian sediments generated in basaltic terrains as terrestrial analogs for the mudstones from Gale Crater, Mars. This work focuses on the clay sized sediments (<2 m) from these deposits as this grain size hosts the most mineralogically and geochemically altered detritus in sedimentary environments. The goal of investigating basaltic sedimentation is to create a terrestrial reference frame that sheds light on the paleoclimate and paleoaqueous conditions responsible for shaping the ancient sedimentary environments of Mars (e.g., Gale Crater and Jezero Crater)
    • …
    corecore