We present a molecular dynamics study of force patterns, tensile strength and
crack formation in a cohesive granular model where the particles are subjected
to swelling or shrinkage gradients. Non-uniform particle size change generates
self-equilibrated forces that lead to crack initiation as soon as strongest
tensile contacts begin to fail. We find that the coarse-grained stresses are
correctly predicted by an elastic model that incorporates particle size change
as metric evolution. The tensile strength is found to be well below the
theoretical strength as a result of inhomogeneous force transmission in
granular media. The cracks propagate either inward from the edge upon shrinkage
and outward from the center upon swelling