27 research outputs found

    Treatment of Retained Fetal Membranes in the Mare—A Practitioner Survey

    Get PDF
    Retained fetal membranes (RFM) is a common post-partum problem in mares for which the treatment is highly variable. The aim of this study was (i) to investigate the different treatments used by equine practitioners for RFM and (ii) to determine if there is a difference between treatments used by reproductive specialists and general equine practitioners. Information regarding treatment of RFM was sought from veterinary practitioners via a survey and this was compared to recommendations in the current literature. The survey was sent out to equine veterinarians and mixed practitioners with a high equine case load. Most treatments of RFM were in line with current recommendations, while some obsolete practices are still routinely performed by a small number of practitioners. Treatment recommendations for RFM have changed over the last few decades, but there are no universally accepted guidelines. The vast variety of treatments reported by practitioners in the present survey reflect this lack of guidance. More extensive research is needed in this area to establish evidence-based, uniformly agreed upon protocols

    Data_Sheet_1_Treatment of Retained Fetal Membranes in the Mare—A Practitioner Survey.docx

    No full text
    <p>Retained fetal membranes (RFM) is a common post-partum problem in mares for which the treatment is highly variable. The aim of this study was (i) to investigate the different treatments used by equine practitioners for RFM and (ii) to determine if there is a difference between treatments used by reproductive specialists and general equine practitioners. Information regarding treatment of RFM was sought from veterinary practitioners via a survey and this was compared to recommendations in the current literature. The survey was sent out to equine veterinarians and mixed practitioners with a high equine case load. Most treatments of RFM were in line with current recommendations, while some obsolete practices are still routinely performed by a small number of practitioners. Treatment recommendations for RFM have changed over the last few decades, but there are no universally accepted guidelines. The vast variety of treatments reported by practitioners in the present survey reflect this lack of guidance. More extensive research is needed in this area to establish evidence-based, uniformly agreed upon protocols.</p

    Variants in PRKAR1B cause a neurodevelopmental disorder with autism spectrum disorder, apraxia, and insensitivity to pain

    No full text
    Purpose We characterize the clinical and molecular phenotypes of six unrelated individuals with intellectual disability and autism spectrum disorder who carry heterozygous missense variants of the PRKAR1B gene, which encodes the R1 beta subunit of the cyclic AMP-dependent protein kinase A (PKA). Methods Variants of PRKAR1B were identified by single- or trio-exome analysis. We contacted the families and physicians of the six individuals to collect phenotypic information, performed in vitro analyses of the identified PRKAR1B-variants, and investigated PRKAR1B expression during embryonic development. Results Recent studies of large patient cohorts with neurodevelopmental disorders found significant enrichment of de novo missense variants in PRKAR1B. In our cohort, de novo origin of the PRKAR1B variants could be confirmed in five of six individuals, and four carried the same heterozygous de novo variant c.1003C>T (p.Arg335Trp; NM_001164760). Global developmental delay, autism spectrum disorder, and apraxia/dyspraxia have been reported in all six, and reduced pain sensitivity was found in three individuals carrying the c.1003C>T variant. PRKAR1B expression in the brain was demonstrated during human embryonal development. Additionally, in vitro analyses revealed altered basal PKA activity in cells transfected with variant-harboring PRKAR1B expression constructs. Conclusion Our study provides strong evidence for a PRKAR1B-related neurodevelopmental disorder

    Biallelic MADD variants cause a phenotypic spectrum ranging from developmental delay to a multisystem disorder

    No full text
    corecore