49 research outputs found

    Impact of P inputs on source-sink P dynamics of sediment along an agricultural ditch network

    Get PDF
    peer-reviewedPhosphorus (P) loss from intensive dairy farms is a pressure on water quality in agricultural catchments. At farm scale, P sources can enter in-field drains and open ditches, resulting in transfer along ditch networks and delivery into nearby streams. Open ditches could be a potential location for P mitigation if the right location was identified, depending on P sources entering the ditch and the source-sink dynamics at the sediment-water interface. The objective of this study was to identify the right location along a ditch to mitigate P losses on an intensive dairy farm. High spatial resolution grab samples for water quality, along with sediment and bankside samples, were collected along an open ditch network to characterise the P dynamics within the ditch. Phosphorus inputs to the ditch adversely affected water quality, and a step change in P concentrations (increase in mean dissolved reactive phosphorus (DRP) from 0.054 to 0.228 mg L−1) midway along the section of the ditch sampled, signalled the influence of a point source entering the ditch. Phosphorus inputs altered sediment P sorption properties as P accumulated along the length of the ditch. Accumulation of bankside and sediment labile extractable P, Mehlich 3 P (M3P) (from 13 to 97 mg kg−1) resulted in a decrease in P binding energies (k) to < 1 L mg−1 at downstream points and raised the equilibrium P concentrations (EPC0) from 0.07 to 4.61 mg L−1 along the ditch. The increase in EPC0 was in line with increasing dissolved and total P in water, demonstrating the role of sediment downstream in this ditch as a secondary source of P to water. Implementation of intervention measures are needed to both mitigate P loss and remediate sediment to restore the sink properties. In-ditch measures need to account for a physicochemical lag time before improvements in water quality will be observed

    Protocol for implementation of family health history collection and decision support into primary care using a computerized family health history system

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The CDC's Family History Public Health Initiative encourages adoption and increase awareness of family health history. To meet these goals and develop a personalized medicine implementation science research agenda, the Genomedical Connection is using an implementation research (T3 research) framework to develop and integrate a self-administered computerized family history system with built-in decision support into 2 primary care clinics in North Carolina.</p> <p>Methods/Design</p> <p>The family health history system collects a three generation family history on 48 conditions and provides decision support (pedigree and tabular family history, provider recommendation report and patient summary report) for 4 pilot conditions: breast cancer, ovarian cancer, colon cancer, and thrombosis. All adult English-speaking, non-adopted, patients scheduled for well-visits are invited to complete the family health system prior to their appointment. Decision support documents are entered into the medical record and available to provider's prior to the appointment. In order to optimize integration, components were piloted by stakeholders prior to and during implementation. Primary outcomes are change in appropriate testing for hereditary thrombophilia and screening for breast cancer, colon cancer, and ovarian cancer one year after study enrollment. Secondary outcomes include implementation measures related to the benefits and burdens of the family health system and its impact on clinic workflow, patients' risk perception, and intention to change health related behaviors. Outcomes are assessed through chart review, patient surveys at baseline and follow-up, and provider surveys. Clinical validity of the decision support is calculated by comparing its recommendations to those made by a genetic counselor reviewing the same pedigree; and clinical utility is demonstrated through reclassification rates and changes in appropriate screening (the primary outcome).</p> <p>Discussion</p> <p>This study integrates a computerized family health history system within the context of a routine well-visit appointment to overcome many of the existing barriers to collection and use of family history information by primary care providers. Results of the implementation process, its acceptability to patients and providers, modifications necessary to optimize the system, and impact on clinical care can serve to guide future implementation projects for both family history and other tools of personalized medicine, such as health risk assessments.</p

    Insights into the Biodiversity, Behavior, and Bioluminescence of Deep-Sea Organisms Using Molecular and Maritime Technology

    Get PDF
    Since its founding, the Monterey Bay Aquarium Research Institute (MBARI) has pioneered unique capabilities for accessing the deep ocean and its inhabitants through focused peer relationships between scientists and engineers. This focus has enabled breakthroughs in our understanding of life in the sea, leading to fundamental advances in describing the biology and the ecology of open-ocean and deep-sea animals. David Packard’s founding principle was the application of technological advances to studying the deep ocean, in part because he recognized the critical importance of this habitat in a global context. Among other fields, MBARI’s science has benefited from applying novel methodologies in molecular biology and genetics, imaging systems, and in situ observations. These technologies have allowed MBARI’s bioluminescence and biodiversity laboratory and worldwide collaborators to address centuries-old questions related to the biodiversity, behavior, and bio-optical properties of organisms living in the water column, from the surface into the deep sea. Many of the most interesting of these phenomena are in the midwater domain—the vast region of ocean between the sunlit surface waters and the deep seafloor

    A framework for ensemble modelling of climate change impacts on lakes worldwide : the ISIMIP Lake Sector

    Get PDF
    Empirical evidence demonstrates that lakes and reservoirs are warming across the globe. Consequently, there is an increased need to project future changes in lake thermal structure and resulting changes in lake biogeochemistry in order to plan for the likely impacts. Previous studies of the impacts of climate change on lakes have often relied on a single model forced with limited scenario-driven projections of future climate for a relatively small number of lakes. As a result, our understanding of the effects of climate change on lakes is fragmentary, based on scattered studies using different data sources and modelling protocols, and mainly focused on individual lakes or lake regions. This has precluded identification of the main impacts of climate change on lakes at global and regional scales and has likely contributed to the lack of lake water quality considerations in policy-relevant documents, such as the Assessment Reports of the Intergovernmental Panel on Climate Change (IPCC). Here, we describe a simulation protocol developed by the Lake Sector of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) for simulating climate change impacts on lakes using an ensemble of lake models and climate change scenarios for ISIMIP phases 2 and 3. The protocol prescribes lake simulations driven by climate forcing from gridded observations and different Earth system models under various representative greenhouse gas concentration pathways (RCPs), all consistently bias-corrected on a 0.5 degrees x 0.5 degrees global grid. In ISIMIP phase 2, 11 lake models were forced with these data to project the thermal structure of 62 well-studied lakes where data were available for calibration under historical conditions, and using uncalibrated models for 17 500 lakes defined for all global grid cells containing lakes. In ISIMIP phase 3, this approach was expanded to consider more lakes, more models, and more processes. The ISIMIP Lake Sector is the largest international effort to project future water temperature, thermal structure, and ice phenology of lakes at local and global scales and paves the way for future simulations of the impacts of climate change on water quality and biogeochemistry in lakes.Peer reviewe

    Sensitivity of Pine Island Glacier to observed ocean forcing

    Get PDF
    We present subannual observations (2009–2014) of a major West Antarctic glacier (Pine Island Glacier) and the neighboring ocean. Ongoing glacier retreat and accelerated ice flow were likely triggered a few decades ago by increased ocean-induced thinning, which may have initiated marine ice-sheet instability. Following a subsequent 60% drop in ocean heat content from early 2012 to late 2013, ice flow slowed, but by < 4%, with flow recovering as the ocean warmed to prior temperatures. During this cold-ocean period, the evolving glacier-bed/ice-shelf system was also in a geometry favorable to stabilization. However, despite a minor, temporary decrease in ice discharge, the basin-wide thinning signal did not change. Thus, as predicted by theory, once marine ice-sheet instability is underway, a single transient high-amplitude ocean cooling has only a relatively minor effect on ice flow. The long-term effects of ocean-temperature variability on ice flow, however, are not yet known

    Learning to Focus on Adult Social and Emotional Learning First in Tulsa: One of Six Case Studies of Schools and Out-of-School-Time Program Partners

    No full text
    This case study is one of a series? detailing how schools and out-of-school-time (OST) programs in six communities have collaborated to build students' social and emotional skills. The communities are participants in Wallace's Partnerships for Social and Emotional Learning Initiative, which has brought together school districts and their OST partners to develop and implement mutually reinforcing social and emotional learning (SEL) activities and instruction across learning settings.?This case study features Whitman Elementary in Tulsa and its OST partner, Youth at Heart. The two collaborated to aid adults in building their own social-emotional skills so they could support social and emotional learning for their students. The idea was to help adults prioritize their own mental health to reduce burnout, effectively model SEL competencies for students, and build strong and healthy relationships with students.This case study finds that by focusing on adult SEL: The effort saw corresponding declines in teacher burnout and turnover. Students experienced consistent SEL resources and best practices.The school and OST staff members noted improvements in students' social and emotional skills as well as the overall school climate

    Biochemical and Structural Characterization of HDAC8 Mutants Associated with Cornelia de Lange Syndrome Spectrum Disorders

    No full text
    Cornelia de Lange Syndrome (CdLS) spectrum disorders are characterized by multiple organ system congenital anomalies that result from mutations in genes encoding core cohesin proteins SMC1A, SMC3, and RAD21, or proteins that regulate cohesin function such as NIPBL and HDAC8. HDAC8 is the Zn<sup>2+</sup>-dependent SMC3 deacetylase required for cohesin recycling during the cell cycle, and 17 different HDAC8 mutants have been identified to date in children diagnosed with CdLS. As part of our continuing studies focusing on aberrant HDAC8 function in CdLS, we now report the preparation and biophysical evaluation of five human HDAC8 mutants: P91L, G117E, H180R, D233G, and G304R. Additionally, the double mutants D233G–Y306F and P91L–Y306F were prepared to enable cocrystallization of intact enzyme–substrate complexes. X-ray crystal structures of G117E, P91L–Y306F, and D233G–Y306F HDAC8 mutants reveal that each CdLS mutation causes structural changes that compromise catalysis and/or thermostability. For example, the D233G mutation disrupts the D233–K202–S276 hydrogen bond network, which stabilizes key tertiary structure interactions, thereby significantly compromising thermostability. Molecular dynamics simulations of H180R and G304R HDAC8 mutants suggest that the bulky arginine side chain of each mutant protrudes into the substrate binding site and also causes active site residue Y306 to fluctuate away from the position required for substrate activation and catalysis. Significantly, the catalytic activities of most mutants can be partially or fully rescued by the activator <i>N</i>-(phenylcarbamothioyl)-benzamide, suggesting that HDAC8 activators may serve as possible leads in the therapeutic management of CdLS
    corecore