103 research outputs found

    Photodriven charge accumulation and carrier dynamics in a water‐soluble carbon nitride photocatalyst

    Get PDF
    Charge accumulation in photoactive molecules and materials holds great promise in solar energy conversion as it allows for decoupling solar‐driven charging from (dark) redox reactions. In this contribution, light‐driven charge accumulation was investigated for a recently reported novel water‐soluble carbon nitride [K,Na‐poly(heptazine imide); K,Na‐PHI] photocatalyst, which exhibits excellent activity and stability in highly selective photocatalytic oxidation of alcohols and concurrent reduction of dioxygen to H 2 O 2 under quasi‐homogeneous conditions. An excellent charge storage ability of the K,Na‐PHI material was demonstrated, showing an optimal density of accumulated electrons (32.2 Όmol of electrons per gram) in the presence of 10 vol % MeOH as a sacrificial electron donor. The long‐lived electrons accumulated under anaerobic conditions as K,Na‐PHI .− radical ions were utilized in interfacial electron transfer to O 2 or methyl viologen in a subsequent dark reaction. Ultrafast time‐resolved spectroscopy was employed to reveal the kinetics of charge‐carrier recombination and methanol oxidation. Geminate recombination of electrons and holes within approximately 100 ps was followed by trap‐assisted recombination. The presence of methanol as a sacrificial electron donor accelerated the decay of the transient absorption signal when a static sample was used. This behavior was ascribed to the faster charge recombination in the presence of the radical anions generated after hole extraction. The work suggests that photodriven electron storage in the water‐soluble carbon nitride is enabled by localized trap states, and highlights the importance of the effective electron donor for creating long‐lived photo‐generated carbon nitride radicals.Taking a (very) quick look : A water‐soluble carbon nitride reveals excellent storage capacity for photogenerated charges. The photoinduced dynamics in this high‐performance water‐soluble carbon nitride photocatalyst are investigated by ultrafast time‐resolved spectroscopy

    Photodoping and fast charge extraction in ionic carbon nitride photoanodes

    Get PDF
    Ionic carbon nitrides based on poly(heptazine imides) (PHI) represent a vigorously studied class of materials with possible applications in photocatalysis and energy storage. Herein, for the first time, the photogenerated charge dynamics in highly stable and binder‐free PHI photoanodes using in operando transient photocurrents and spectroelectrochemical photoinduced absorption measurements is studied. It is discovered that light‐induced accumulation of long‐lived trapped electrons within the PHI film leads to effective photodoping of the PHI film, resulting in a significant improvement of photocurrent response due to more efficient electron transport. While photodoping is previously reported for various semiconductors, it has not been shown before for carbon nitride materials. Furthermore, it is found that the extraction kinetics of untrapped electrons are remarkably fast in these PHI photoanodes, with electron extraction times (ms) comparable to those measured for commonly employed metal oxide semiconductors. These results shed light on the excellent performance of PHI photoanodes in alcohol photoreforming, including very negative photocurrent onset, outstanding fill factor, and the possibility to operate under zero‐bias conditions. More generally, the here reported photodoping effect and fast electron extraction in PHI photoanodes establish a strong rationale for the use of PHI films in various applications, such as bias‐free photoelectrochemistry or photobatteries

    Sol−gel processing of water‐soluble carbon nitride enables high‐performance photoanodes **

    Get PDF
    In spite of the enormous promise that polymeric carbon nitride (PCN) materials hold for various applications, the fabrication of high‐quality, binder‐free PCN films and electrodes has been a largely elusive goal to date. Here, we tackle this challenge by devising, for the first time, a water‐based sol−gel approach that enables facile preparation of thin films based on poly(heptazine imide) (PHI), a polymer belonging to the PCN family. The sol−gel process capitalizes on the use of a water‐soluble PHI precursor that allows formation of a non‐covalent hydrogel. The hydrogel can be deposited on conductive substrates, resulting in formation of mechanically stable polymeric thin layers. The resulting photoanodes exhibit unprecedented photoelectrochemical (PEC) performance in alcohol reforming and highly selective (∌100 %) conversions with very high photocurrents (>0.25 mA cm −2 under 2 sun) down to <0 V vs. RHE. This enables even effective PEC operation under zero‐bias conditions and represents the very first example of a ‘soft matter’‐based PEC system capable of bias‐free photoreforming. The robust binder‐free films derived from sol−gel processing of water‐soluble PCN thus constitute a new paradigm for high‐performance ‘soft matter’ photoelectrocatalytic systems and pave the way for further applications in which high‐quality PCN films are required.Completely unbiased : Robust binder‐free films derived from sol−gel processing of a water‐soluble polymeric carbon nitride precursor exhibit unprecedented performance in photoelectrocatalytic reforming of alcohols, including effective operation under bias‐free conditions

    Protein Kinase D2 Is an Essential Regulator of Murine Myoblast Differentiation

    Get PDF
    Muscle differentiation is a highly conserved process that occurs through the activation of quiescent satellite cells whose progeny proliferate, differentiate, and fuse to generate new myofibers. A defined pattern of myogenic transcription factors is orchestrated during this process and is regulated via distinct signaling cascades involving various intracellular signaling pathways, including members of the protein kinase C (PKC) family. The protein kinase D (PKD) isoenzymes PKD1, -2, and -3, are prominent downstream targets of PKCs and phospholipase D in various biological systems including mouse and could hence play a role in muscle differentiation. In the present study, we used a mouse myoblast cell line (C2C12) as an in vitro model to investigate the role of PKDs, in particular PKD2, in muscle stem cell differentiation. We show that C2C12 cells express all PKD isoforms with PKD2 being highly expressed. Furthermore, we demonstrate that PKD2 is specifically phosphorylated/activated during the initiation of mouse myoblast differentiation. Selective inhibition of PKCs or PKDs by pharmacological inhibitors blocked myotube formation. Depletion of PKD2 by shRNAs resulted in a marked inhibition of myoblast cell fusion. PKD2-depleted cells exhibit impaired regulation of muscle development-associated genes while the proliferative capacity remains unaltered. Vice versa forced expression of PKD2 increases myoblast differentiation. These findings were confirmed in primary mouse satellite cells where myotube fusion was also decreased upon inhibition of PKDs. Active PKD2 induced transcriptional activation of myocyte enhancer factor 2D and repression of Pax3 transcriptional activity. In conclusion, we identify PKDs, in particular PKD2, as a major mediator of muscle cell differentiation in vitro and thereby as a potential novel target for the modulation of muscle regeneration

    A Study in Red: The Overlooked Role of Azo‐Moieties in Polymeric Carbon Nitride Photocatalysts with Strongly Extended Optical Absorption

    Get PDF
    The unique optical and photoredox properties of heptazine-based polymeric carbon nitride (PCN) materials make them promising semiconductors for driving various productive photocatalytic conversions. However, their typical absorption onset at ca. 430–450 nm is still far from optimum for efficient sunlight harvesting. Despite many reports of successful attempts to extend the light absorption range of PCNs, the determination of the structural features responsible for the red shift of the light absorption edge beyond 450 nm has often been obstructed by the highly disordered structure of PCNs and/or low content of the moieties responsible for changes in optical and electronic properties. In this work, we implement a high-temperature (900 °C) treatment procedure for turning the conventional melamine-derived yellow PCN into a red carbon nitride. This approach preserves the typical PCN structure but incorporates a new functionality that promotes visible light absorption. A detailed characterization of the prepared material reveals that partial heptazine fragmentation accompanied by de-ammonification leads to the formation of azo-groups in the red PCN, a chromophore moiety whose role in shifting the optical absorption edge of PCNs has been overlooked so far. These azo moieties can be activated under visible-light (470 nm) for H₂ evolution even without any additional co-catalyst, but are also responsible for enhanced charge-trapping and radiative recombination, as shown by spectroscopic studies

    Use and misuse of biomarkers and the role of D-dimer and C-reactive protein in the management of COVID-19: A post-hoc analysis of a prospective cohort study

    Get PDF
    OBJECTIVE: Coronavirus disease 2019 (COVID-19) is associated with high mortality among hospitalized patients and incurs high costs. Severe acute respiratory syndrome coronavirus 2 infection can trigger both inflammatory and thrombotic processes, and these complications can lead to a poorer prognosis. This study aimed to evaluate the association and temporal trends of D-dimer and C-reactive protein (CRP) levels with the incidence of venous thromboembolism (VTE), hospital mortality, and costs among inpatients with COVID-19. METHODS: Data were extracted from electronic patient records and laboratory databases. Crude and adjusted associations for age, sex, number of comorbidities, Sequential Organ Failure Assessment score at admission, and D-dimer or CRP logistic regression models were used to evaluate associations. RESULTS: Between March and June 2020, COVID-19 was documented in 3,254 inpatients. The D-dimer level ≄4,000 ng/mL fibrinogen equivalent unit (FEU) mortality odds ratio (OR) was 4.48 (adjusted OR: 1.97). The CRP level ≄220 mg/dL OR for death was 7.73 (adjusted OR: 3.93). The D-dimer level ≄4,000 ng/mL FEU VTE OR was 3.96 (adjusted OR: 3.26). The CRP level ≄220 mg/dL OR for VTE was 2.71 (adjusted OR: 1.92). All these analyses were statistically significant (p&lt;0.001). Stratified hospital costs demonstrated a dose-response pattern. Adjusted D-dimer and CRP levels were associated with higher mortality and doubled hospital costs. In the first week, elevated D-dimer levels predicted VTE occurrence and systemic inflammatory harm, while CRP was a hospital mortality predictor. CONCLUSION: D-dimer and CRP levels were associated with higher hospital mortality and a higher incidence of VTE. D-dimer was more strongly associated with VTE, although its discriminative ability was poor, while CRP was a stronger predictor of hospital mortality. Their use outside the usual indications should not be modified and should be discouraged

    Genome Sequence of the Saprophyte Leptospira biflexa Provides Insights into the Evolution of Leptospira and the Pathogenesis of Leptospirosis

    Get PDF
    Leptospira biflexa is a free-living saprophytic spirochete present in aquatic environments. We determined the genome sequence of L. biflexa, making it the first saprophytic Leptospira to be sequenced. The L. biflexa genome has 3,590 protein-coding genes distributed across three circular replicons: the major 3,604 chromosome, a smaller 278-kb replicon that also carries essential genes, and a third 74-kb replicon. Comparative sequence analysis provides evidence that L. biflexa is an excellent model for the study of Leptospira evolution; we conclude that 2052 genes (61%) represent a progenitor genome that existed before divergence of pathogenic and saprophytic Leptospira species. Comparisons of the L. biflexa genome with two pathogenic Leptospira species reveal several major findings. Nearly one-third of the L. biflexa genes are absent in pathogenic Leptospira. We suggest that once incorporated into the L. biflexa genome, laterally transferred DNA undergoes minimal rearrangement due to physical restrictions imposed by high gene density and limited presence of transposable elements. In contrast, the genomes of pathogenic Leptospira species undergo frequent rearrangements, often involving recombination between insertion sequences. Identification of genes common to the two pathogenic species, L. borgpetersenii and L. interrogans, but absent in L. biflexa, is consistent with a role for these genes in pathogenesis. Differences in environmental sensing capacities of L. biflexa, L. borgpetersenii, and L. interrogans suggest a model which postulates that loss of signal transduction functions in L. borgpetersenii has impaired its survival outside a mammalian host, whereas L. interrogans has retained environmental sensory functions that facilitate disease transmission through water

    Water-Soluble Polymeric Carbon Nitride Colloidal Nanoparticles for Highly Selective Quasi-Homogeneous Photocatalysis

    Get PDF
    Heptazine‐based polymeric carbon nitrides (PCN) are promising photocatalysts for light‐driven redox transformations. However, their activity is hampered by low surface area resulting in low concentration of accessible active sites. Herein, we report a bottom‐up preparation of PCN nanoparticles with a narrow size distribution (ca. 10±3 nm), which are fully soluble in water showing no gelation or precipitation over several months. They allow photocatalysis to be carried out under quasi‐homogeneous conditions. The superior performance of water‐soluble PCN, compared to conventional solid PCN, is shown in photocatalytic H2O2 production via reduction of oxygen accompanied by highly selective photooxidation of 4‐methoxybenzyl alcohol and benzyl alcohol or lignocellulose‐derived feedstock (ethanol, glycerol, glucose). The dissolved photocatalyst can be easily recovered and re‐dissolved by simple modulation of the ionic strength of the medium, without any loss of activity and selectivity.This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—Projektnummer 364549901—TRR 234 [Projects B6, B7, C3 and Z2] and BE 5102/3‐1. We acknowledge also support by Spanish MINECO (MAT2016‐78155‐C2‐1‐R) and Gobierno del Principado de Asturias (GRUPIN‐ID2018‐170), and the project CICECO‐Aveiro Institute of Materials, FCT Ref. UID/CTM/50011/2019, financed by national funds through the FCT/MCTES. L.M., M.S., and M.I. also acknowledge the National NMR Network (PTNMR), partially supported by Infrastructure Project N° 022161, and FCT/MCTES for funding (Project PTDC/QEQ‐QAN/6373/2014). B.K. acknowledges the University of Iceland Research Fund for support through a PhD fellowship. Computational resources were provided by the state of Baden‐WĂŒrttemberg through bwHPC and the German Science Foundation (DFG) under Grant No. INST 40/467‐1 FUGG. C.N. and A.T. acknowledge financial support of the DFG through the project TU 149/8‐2 “Towards photo‐active membranes for artificial photosynthesis” as well as the DFG through a research infrastructure grant INST 275/257‐1 FUGG. I.K. acknowledges the support of the Alexander von Humboldt Foundation through the Humboldt Research Fellowship.Peer reviewe
    • 

    corecore