31 research outputs found

    Pattern recognition receptors are subset specific in dendritic cells

    Get PDF

    High susceptibility to fatty liver disease in two-pore channel 2-deficient mice

    Get PDF
    Endolysosomal organelles play a key role in trafficking, breakdown and receptor-mediated recycling of different macromolecules such as low-density lipoprotein (LDL)-cholesterol, epithelial growth factor (EGF) or transferrin. Here we examine the role of two-pore channel (TPC) 2, an endolysosomal cation channel, in these processes. Embryonic mouse fibroblasts and hepatocytes lacking TPC2 display a profound impairment of LDL-cholesterol and EGF/EGF-receptor trafficking. Mechanistically, both defects can be attributed to a dysfunction of the endolysosomal degradation pathway most likely on the level of late endosome to lysosome fusion. Importantly, endolysosomal acidification or lysosomal enzyme function are normal in TPC2-deficient cells. TPC2-deficient mice are highly susceptible to hepatic cholesterol overload and liver damage consistent with non-alcoholic fatty liver hepatitis. These findings indicate reduced metabolic reserve of hepatic cholesterol handling. Our results suggest that TPC2 plays a crucial role in trafficking in the endolysosomal degradation pathway and, thus, is potentially involved in the homoeostatic control of many macromolecules and cell metabolites

    Silac mouse for quantitative proteomics uncovers kindlin-3 as an essential factor for red blood cell function

    Get PDF
    Stable isotope labeling by amino acids in cell culture (SILAC) has become a versatile tool for quantitative, mass spectrometry (MS)-based proteomics. Here, we completely label mice with a diet containing either the natural or the 13C6-substituted version of lysine. Mice were labeled over four generations with the heavy diet, and development, growth, and behavior were not affected. MS analysis of incorporation levels allowed for the determination of incorporation rates of proteins from blood cells and organs. The F2 generation was completely labeled in all organs tested. SILAC analysis from various organs lacking expression of β1 integrin, β-Parvin, or the integrin tail-binding protein Kindlin-3 confirmed their absence and disclosed a structural defect of the red blood cell membrane skeleton in Kindlin-3-deficient erythrocytes. The SILAC-mouse approach is a versatile tool by which to quantitatively compare proteomes from knockout mice and thereby determine protein functions under complex in vivo conditions

    Biomarker analysis of cetuximab plus oxaliplatin/leucovorin/5-fluorouracil in first-line metastatic gastric and oesophago-gastric junction cancer: results from a phase II trial of the Arbeitsgemeinschaft Internistische Onkologie (AIO)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The activity of the epidermal growth factor receptor (EGFR)-directed monoclonal antibody cetuximab combined with oxaliplatin/leucovorin/5-fluorouracil (FUFOX) was assessed in first-line metastatic gastric and oesophago-gastric junction (OGJ) cancer in a prospective phase II study showing a promising objective tumour response rate of 65% and a low mutation frequency of <it>KRAS </it>(3%). The aim of the correlative tumour tissue studies was to investigate the relationship between <it>EGFR </it>gene copy numbers, activation of the EGFR pathway, expression and mutation of E-cadherin, V600E BRAF mutation and clinical outcome of patients with gastric and OGJ cancer treated with cetuximab combined with FUFOX.</p> <p>Methods</p> <p>Patients included in this correlative study (<it>n </it>= 39) were a subset of patients from the clinical phase II study. The association between <it>EGFR </it>gene copy number, activation of the EGFR pathway, abundance and mutation of E-cadherin which plays an important role in these disorders, BRAF mutation and clinical outcome of patients was studied. <it>EGFR </it>gene copy number was assessed by FISH. Expression of the phosphorylated forms of EGFR and its downstream effectors Akt and MAPK, in addition to E-cadherin was analysed by immunohistochemistry. The frequency of mutant V600E BRAF was evaluated by allele-specific PCR and the mutation profile of the E-cadherin gene <it>CDH1 </it>was examined by DHPLC followed by direct sequence analysis. Correlations with overall survival (OS), time to progression (TTP) and overall response rate (ORR) were assessed.</p> <p>Results</p> <p>Our study showed a significant association between increased <it>EGFR </it>gene copy number (≥ 4.0) and OS in gastric and OGJ cancer, indicating the possibility that patients may be selected for treatment on a genetic basis. Furthermore, a significant correlation was shown between activated EGFR and shorter TTP and ORR, but not between activated EGFR and OS. No V600E BRAF mutations were identified. On the other hand, an interesting trend between high E-cadherin expression levels and better OS was observed and two <it>CDH1 </it>exon 9 missense mutations (A408V and D402H) were detected.</p> <p>Conclusion</p> <p>Our finding that increased <it>EGFR </it>gene copy numbers, activated EGFR and the E-cadherin status are potentially interesting biomarkers needs to be confirmed in larger randomized clinical trials.</p> <p>Trial registration</p> <p>Multicentre clinical study with the European Clinical Trials Database number 2004-004024-12.</p

    Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade.

    Get PDF
    The genomes of cancers deficient in mismatch repair contain exceptionally high numbers of somatic mutations. In a proof-of-concept study, we previously showed that colorectal cancers with mismatch repair deficiency were sensitive to immune checkpoint blockade with antibodies to programmed death receptor-1 (PD-1). We have now expanded this study to evaluate the efficacy of PD-1 blockade in patients with advanced mismatch repair-deficient cancers across 12 different tumor types. Objective radiographic responses were observed in 53% of patients, and complete responses were achieved in 21% of patients. Responses were durable, with median progression-free survival and overall survival still not reached. Functional analysis in a responding patient demonstrated rapid in vivo expansion of neoantigen-specific T cell clones that were reactive to mutant neopeptides found in the tumor. These data support the hypothesis that the large proportion of mutant neoantigens in mismatch repair-deficient cancers make them sensitive to immune checkpoint blockade, regardless of the cancers\u27 tissue of origin

    The Raman optical activity of β-D-xylose: where experiment and theory meet

    Get PDF
    Besides its applications in bioenergy and biosynthesis, β-D-xylose is a very simple monosaccharide that exhibits relatively high rigidity. As such, it provides the best basis to study the impact of different solvation shell radii on the computation of its Raman optical activity (ROA) spectrum. Indeed, this chiroptical spectroscopic technique provides exquisite sensitivity to stereochemistry, and benefits much from theoretical support for interpretation. Our simulation approach combines density functional theory (DFT) and molecular dynamics (MD) in order to efficiently account for the crucial hydration effects in the simulation of carbohydrates and their spectroscopic response predictions. Excellent agreement between the simulated spectrum and the experiment was obtained with a solvation radius of 10 Å. Vibrational bands have been resolved from the computed ROA data, and compared with previous results on different monosaccharides in order to identify specific structure–spectrum relationships and to investigate the effect of the solvation environment on the conformational dynamics of small sugars. From the comparison with ROA analytical results, a shortcoming of the classical force field used for the MD simulations has been identified and overcome, again highlighting the complementary role of experiment and theory in the structural characterisation of complex biomolecules. Indeed, due to unphysical puckering, a spurious ring conformation initially led to erroneous conformer ratios, which are used as weights for the averaging of the spectral average, and only by removing this contribution was near perfect comparison between theory and experiment achieved

    A list of land plants of Parque Nacional do Caparaó, Brazil, highlights the presence of sampling gaps within this protected area

    Get PDF
    Brazilian protected areas are essential for plant conservation in the Atlantic Forest domain, one of the 36 global biodiversity hotspots. A major challenge for improving conservation actions is to know the plant richness, protected by these areas. Online databases offer an accessible way to build plant species lists and to provide relevant information about biodiversity. A list of land plants of “Parque Nacional do Caparaó” (PNC) was previously built using online databases and published on the website "Catálogo de Plantas das Unidades de Conservação do Brasil." Here, we provide and discuss additional information about plant species richness, endemism and conservation in the PNC that could not be included in the List. We documented 1,791 species of land plants as occurring in PNC, of which 63 are cited as threatened (CR, EN or VU) by the Brazilian National Red List, seven as data deficient (DD) and five as priorities for conservation. Fifity-one species were possible new ocurrences for ES and MG states

    DDX1 interferes with KSRP association with 14-3-3 and competes with 14-3-3 for interaction with KSRP.

    No full text
    <p>(A) HeLa-TO cells were cotransfected with a FLAG-KSRP expression vector or a control FLAG vector and a control siRNA or a DDX1 siRNA. Cytoplasmic extracts were subjected to anti-FLAG immunoprecipitation. The precipitates were analyzed by anti-14-3-3 and anti-FLAG immunoblotting. 5% input was also analyzed by anti-14-3-3. (B) HeLa-TO cells were cotransfected with a FLAG-KSRP expression vector or a control FLAG vector and DDX1 siRNA. Cytoplasmic extracts were subjected to anti-FLAG immunoprecipitation with the addition of two different concentrations (6 and 12 nM) of recombinant GST-DDX1 or GST. The precipitates were analyzed by anti-14-3-3 and anti-FLAG immunoblotting. (C) HeLa-TO cells were transfected with vectors expressing FLAG-KSRP or FLAG-KSRP fragments consisting of the four KH motifs or the C-terminus. The FLAG immunoprecipitations were subjected to immunoblotting with anti-14-3-3, anti-DDX1, and anti-FLAG. (D) HeLa-TO cells were transfected with a control FLAG vector or a FLAG-DDX1 expression vector. Cytoplasmic extracts were subjected to anti-FLAG immunoprecipitation. The precipitates were analyzed by anti-14-3-3 and anti-FLAG immunoblotting. 5% input was also analyzed by anti-14-3-3.</p

    Down-regulation of DDX1 facilitates AMD.

    No full text
    <p>(A) HeLa-TO cells were transfected with a construct expressing GB-ARE<sup>GMCSF</sup> mRNA under the control of a Tet-regulatory promoter and a construct constitutively expressing GB-GAPDH mRNA under the control of the CMV promoter. The cultures were also transfected a control siRNA (CAT) or a DDX1 siRNA. Cytoplasmic RNA was isolated at different time points after the addition of doxycycline (Dox). The levels of GB-ARE<sup>GMCSF</sup> and GB-GAPDH mRNAs were analyzed by Northern blot. Signals of GB-ARE<sup>GMCSF</sup> mRNA were quantified by a phosphorimager and normalized to that of GB-GAPDH mRNA. The calculated half-lives (t<sub>1/2</sub>; n=3) of GB-ARE<sup>GMCSF</sup> mRNA are shown as mean values ± standard deviations from three independent experiments. P value is indicated and calculated by Student’s t-test using Microsoft Excel software. (B) Downregulation of DDX1 by siRNA. Extracts of HeLa-TO cells in (A) were subjected to immunoblot analysis with anti-DDX1 or anti-HuR antibodies. Different amounts of CAT siRNA-treated extracts (12, 25, 50, or 100% of the amounts used in lane 5) were loaded to estimate knockdown efficiency.</p
    corecore