3 research outputs found

    Statistical upscaling of ecosystem CO2 fluxes across the terrestrial tundra and boreal domain: Regional patterns and uncertainties

    Get PDF
    The regional variability in tundra and boreal carbon dioxide (CO2) fluxes can be high, complicating efforts to quantify sink-source patterns across the entire region. Statistical models are increasingly used to predict (i.e., upscale) CO2 fluxes across large spatial domains, but the reliability of different modeling techniques, each with different specifications and assumptions, has not been assessed in detail. Here, we compile eddy covariance and chamber measurements of annual and growing season CO2 fluxes of gross primary productivity (GPP), ecosystem respiration (ER), and net ecosystem exchange (NEE) during 1990-2015 from 148 terrestrial high-latitude (i.e., tundra and boreal) sites to analyze the spatial patterns and drivers of CO2 fluxes and test the accuracy and uncertainty of different statistical models. CO2 fluxes were upscaled at relatively high spatial resolution (1 km(2)) across the high-latitude region using five commonly used statistical models and their ensemble, that is, the median of all five models, using climatic, vegetation, and soil predictors. We found the performance of machine learning and ensemble predictions to outperform traditional regression methods. We also found the predictive performance of NEE-focused models to be low, relative to models predicting GPP and ER. Our data compilation and ensemble predictions showed that CO2 sink strength was larger in the boreal biome (observed and predicted average annual NEE -46 and -29 g C m(-2) yr(-1), respectively) compared to tundra (average annual NEE +10 and -2 g C m(-2) yr(-1)). This pattern was associated with large spatial variability, reflecting local heterogeneity in soil organic carbon stocks, climate, and vegetation productivity. The terrestrial ecosystem CO2 budget, estimated using the annual NEE ensemble prediction, suggests the high-latitude region was on average an annual CO2 sink during 1990-2015, although uncertainty remains high

    Potential future methane emission hot spots in Greenland

    Get PDF
    Climate models have been making significant progress encompassing an increasing number of complex feedback mechanisms from natural ecosystems. Permafrost thaw and subsequent induced greenhouse gas emissions, however, remain a challenge for climate models at large. Deducing permafrost conditions and associated greenhouse gas emissions from parameters that are simulated in climate models would be a helpful step towards estimating emission budgets from permafrost regions. Here we use a regional climate model with a 5 km horizontal resolution to assess future potential methane (CH _4 ) emissions over presently unglaciated areas in Greenland under an RCP8.5 scenario. A simple frost index is applied to estimate permafrost conditions from the model output. CH _4 flux measurements from two stations in Greenland; Nuuk representing sub-Arctic and Zackenberg high-Arctic climate, are used to establish a relationship between emissions and near surface air temperature. Permafrost conditions in Greenland change drastically by the end of the 21st century in an RCP8.5 climate. Continuous permafrost remains stable only in North Greenland, the north-west coast, the northern tip of Disko Island, and Nuussuaq. Southern Greenland conditions only sustain sporadic permafrost conditions and largely at high elevations, whereas former permafrost in other regions thaws. The increasing thawed soil leads to increasing CH _4 emissions. Especially the area surrounding Kangerlussuaq, Scoresby Land, and the southern coast of Greenland exhibit potentially high emissions during the longer growing season. The constructed maps and budgets combining modelled permafrost conditions with observed CH _4 fluxes from CH _4 promoting sites represent a useful tool to identify areas in need of additional monitoring as they highlight potential CH _4 hot spots

    Statistical upscaling of ecosystem CO2 fluxes across the terrestrial tundra and boreal domain: regional patterns and uncertainties

    No full text
    corecore