188 research outputs found

    Exploring energy sufficiency : new challenges and options in times of crisis

    Get PDF
    The war in Ukraine is changing the political landscape at breakneck speed. How should politics and society react to high energy prices and a precarious dependence on fossil fuels imports? Can modern societies get by with much less energy? Energy sufficiency can play an important role in answering these questions. The contributions in this Special topic explore sufficiency as an interdisciplinary research topic for energy modeling, scenarios, and policy

    Discovery of a novel 5-carbonyl-1H-imidazole-4-carboxamide class of inhibitors of the HIV-1 integrase–LEDGF/p75 interaction

    Get PDF
    AbstractThough much progress has been made in the inhibition of HIV-1 integrase catalysis, clinical resistance mutations have limited the promise of long-term drug prescription. Consequently, allosteric inhibition of integrase activity has emerged as a promising approach to antiretroviral discovery and development. Specifically, inhibitors of the interaction between HIV-1 integrase and cellular cofactor LEDGF/p75 have been validated to diminish proviral integration in cells and deliver a potent reduction in viral replicative capacity. Here, we have contributed to the development of novel allosteric integrase inhibitors with a high-throughput AlphaScreen-based random screening approach, with which we have identified novel 5-carbonyl-1H-imidazole-4-carboxamides capable of inhibiting the HIV-1 integrase–LEDGF/p75 interaction in vitro. Following a structure–activity relationship analysis of the initial 1H-imidazole-4,5-dicarbonyl core, we optimized the compound’s structure through an industrial database search, and we went further to synthesize a selective and non-cytotoxic panel of inhibitors with enhanced potency

    Interplay between HIV Entry and Transportin-SR2 Dependency

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Transportin-SR2 (TRN-SR2, TNPO3, transportin 3) was previously identified as an interaction partner of human immunodeficiency virus type 1 (HIV-1) integrase and functions as a nuclear import factor of HIV-1. A possible role of capsid in transportin-SR2-mediated nuclear import was recently suggested by the findings that a chimeric HIV virus, carrying the murine leukemia virus (MLV) capsid and matrix proteins, displayed a transportin-SR2 independent phenotype, and that the HIV-1 N74D capsid mutant proved insensitive to transportin-SR2 knockdown.</p> <p>Results</p> <p>Our present analysis of viral specificity reveals that TRN-SR2 is not used to the same extent by all lentiviruses. The DNA flap does not determine the TRN-SR2 requirement of HIV-1. We corroborate the TRN-SR2 independent phenotype of the chimeric HIV virus carrying the MLV capsid and matrix proteins. We reanalyzed the HIV-1 N74D capsid mutant in cells transiently or stably depleted of transportin-SR2 and confirm that the N74D capsid mutant is independent of TRN-SR2 when pseudotyped with the vesicular stomatitis virus glycoprotein (VSV-G). Remarkably, although somewhat less dependent on TRN-SR2 than wild type virus, the N74D capsid mutant carrying the wild type HIV-1 envelope required TRN-SR2 for efficient replication. By pseudotyping with envelopes that mediate pH-independent viral uptake including HIV-1, measles virus and amphotropic MLV envelopes, we demonstrate that HIV-1 N74D capsid mutant viruses retain partial dependency on TRN-SR2. However, this dependency on TRN-SR2 is lost when the HIV N74D capsid mutant is pseudotyped with envelopes mediating pH-dependent endocytosis, such as the VSV-G and Ebola virus envelopes.</p> <p>Conclusion</p> <p>Here we discover a link between the viral entry of HIV and its interaction with TRN-SR2. Our data confirm the importance of TRN-SR2 in HIV-1 replication and argue for careful interpretation of experiments performed with VSV-G pseudotyped viruses in studies on early steps of HIV replication including the role of capsid therein.</p

    Identification of Novel 3-Hydroxy-pyran-4-One Derivatives as Potent HIV-1 Integrase Inhibitors Using in silico Structure-Based Combinatorial Library Design Approach

    Get PDF
    We describe herein the development and experimental validation of a computational protocol for optimizing a series of 3-hydroxy-pyran-4-one derivatives as HIV integrase inhibitors (HIV INIs). Starting from a previously developed micromolar inhibitors of HIV integrase (HIV IN), we performed an in-depth investigation based on an in silico structure-based combinatorial library designing approach. This method allowed us to combine a combinatorial library design and side chain hopping with Quantum Polarized Ligand Docking (QPLD) studies and Molecular Dynamics (MD) simulation. The combinatorial library design allowed the identification of the best decorations for our promising scaffold. The resulting compounds were assessed by the mentioned QPLD methodology using a homology model of full-length binary HIV IN/DNA for retrieving the best performing compounds acting as HIV INIs. Along with the prediction of physico-chemical properties, we were able to select a limited number of drug-like compounds potentially displaying potent HIV IN inhibition. From this final set, based on the synthetic accessibility, we further shortlisted three representative compounds for the synthesis. The compounds were experimentally assessed in vitro for evaluating overall HIV-1 IN inhibition, HIV-1 IN strand transfer activity inhibition, HIV-1 activity inhibition and cellular toxicity. Gratifyingly, all of them showed relevant inhibitory activity in the in vitro tests along with no toxicity. Among them HPCAR-28 represents the most promising compound as potential anti-HIV agent, showing inhibitory activity against HIV IN in the low nanomolar range, comparable to that found for Raltegravir, and relevant potency in inhibiting HIV-1 replication and HIV-1 IN strand transfer activity. In summary, our results outline HPCAR-28 as a useful optimized hit for the potential treatment of HIV-1 infection by targeting HIV IN

    Association of polymorphisms in the LEDGF/p75 gene (PSIP1) with susceptibility to HIV-1 infection and disease progression

    Get PDF
    OBJECTIVE: LEDGF/p75, encoded by the PSIP1 gene, interacts with HIV-1 integrase and targets HIV-1 integration into active genes. We investigated the influence of polymorphisms in PSIP1 on HIV-1 acquisition and disease progression in black South Africans. METHODS: Integrase binding domain of LEDGF/p75 was sequenced in 126 participants. Four haplotype tagging SNPs rs2277191, rs1033056, rs12339417 and rs10283923 referred to as SNP1, SNP2, SNP3 and SNP4, respectively, and one exonic SNP rs61744944 (SNP5, Q472L) were genotyped in 195 HIV-1 seronegative, 52 primary and 403 chronically infected individuals using TaqMan assays. LEDGF/p75 expression was quantified by real-time RT-PCR. The impact of Q472L mutation on the interaction with HIV_1 IN was measured by AlphaScreen. RESULTS: rs2277191 (SNP1) A was more frequent among seropositives (P = 0.06, Fisher's exact test). Among individuals followed longitudinally SNP1A trended towards association with higher likelihood of HIV-1 acquisition [relative hazard (RH) = 2.21, P = 0.08; Cox model] and it was also associated with rapid disease progression (RH = 5.98, P = 0.04; Cox model) in the recently infected (primary infection) cohort. rs12339417 (SNP3)C was associated with slower decline of CD4(+) T cells (P = 0.02) and lower messenger RNA (mRNA) levels of LEDGF/p75 (P < 0.01). Seroconverters had higher preinfection mRNA levels of LEDGF/p75 (P < 0.01) and these levels decreased after HIV-1 infection (P = 0.02). CONCLUSIONS: Genetic variants of PSIP1 may affect HIV-1 outcomes. Further studies are needed to confirm the effect of genetic variation of PSIP1 on HIV-1 pathogenesis in different cohorts

    Virus Evolution Reveals an Exclusive Role for LEDGF/p75 in Chromosomal Tethering of HIV

    Get PDF
    Retroviruses by definition insert their viral genome into the host cell chromosome. Although the key player of retroviral integration is viral integrase, a role for cellular cofactors has been proposed. Lentiviral integrases use the cellular protein LEDGF/p75 to tether the preintegration complex to the chromosome, although the existence of alternative host proteins substituting for the function of LEDGF/p75 in integration has been proposed. Truncation mutants of LEDGF/p75 lacking the chromosome attachment site strongly inhibit HIV replication by competition for the interaction with integrase. In an attempt to select HIV strains that can overcome the inhibition, we now have used T-cell lines that stably express a C-terminal fragment of LEDGF/p75. Despite resistance development, the affinity of integrase for LEDGF/p75 is reduced and replication kinetics in human primary T cells is impaired. Detection of the integrase mutations A128T and E170G at key positions in the LEDGF/p75–integrase interface provides in vivo evidence for previously reported crystallographic data. Moreover, the complementary inhibition by LEDGF/p75 knockdown and mutagenesis at the integrase–LEDGF/p75 interface points to the incapability of HIV to circumvent LEDGF/p75 function during proviral integration. Altogether, the data provide a striking example of the power of viral molecular evolution. The results underline the importance of the LEDGF/p75 HIV-1 interplay as target for innovative antiviral therapy. Moreover, the role of LEDGF/p75 in targeting integration will stimulate research on strategies to direct gene therapy vectors into safe landing sites

    The mutation of Transportin 3 gene that causes limb girdle muscular dystrophy 1F induces protection against HIV-1 infection

    Get PDF
    The causative mutation responsible for limb girdle muscular dystrophy 1F (LGMD1F) is one heterozygous single nucleotide deletion in the stop codon of the nuclear import factor Transportin 3 gene (TNPO3). This mutation causes a carboxy-terminal extension of 15 amino acids, producing a protein of unknown function (TNPO3_mut) that is co-expressed with wild-type TNPO3 (TNPO3_wt). TNPO3 has been involved in the nuclear transport of serine/arginine-rich proteins such as splicing factors and also in HIV-1 infection through interaction with the viral integrase and capsid. We analyzed the effect of TNPO3_mut on HIV-1 infection using PBMCs from patients with LGMD1F infected ex vivo. HIV-1 infection was drastically impaired in these cells and viral integration was reduced 16-fold. No significant effects on viral reverse transcription and episomal 2-LTR circles were observed suggesting that the integration of HIV-1 genome was restricted. This is the second genetic defect described after CCR5Δ32 that shows strong resistance against HIV-1 infection.This work was supported by crowfunding site PRECIPITA from FECYT, the MERCKSALUD Foundation, the Spanish Ministry of Science (FIS PI12/00969; PI16CIII/00034; SAF2016-78480-R); the Spanish AIDS Research Network RD16CIII/0002/0001 that is included in Acción Estratégica en Salud, Plan Nacional de Investigación Científica, Desarrollo e Innovación Tecnológica 2016-2020, Instituto de Salud Carlos III, European Region Development Fund (FEDER); CIBERer-ISCIII (FIS PI16/00316) co-financed by the European Regional Development Founds (FEDER), IIS La Fe (2016-0388; 2018-0200), and Fundación Isabel Gemio (http://www.fundacionisabelgemio.com). The work of Dra. Sara Rodríguez-Mora is supported by the Asociación Conquistando Escalones, funded by Spanish LGMD1F patients and Sara Borrell grant from Instituto de Salud Carlos III. The work of Dra. María Rosa López-Huertas is financed by ISCIII-Subdirección General de Evaluación and European Funding for Regional Development (FEDER) and by Spanish Ministry of Economy and Competitiveness (PIE13/00040). The work of Elena Mateos is supported by the Spanish Ministry of Economy and Competitiveness SAF2016-78480-R. The work of Lorena Vigón is supported by a pre-doctoral grant from Instituto de Salud Carlos III. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.S

    LEDGF/p75-Independent HIV-1 Replication Demonstrates a Role for HRP-2 and Remains Sensitive to Inhibition by LEDGINs

    Get PDF
    Lens epithelium–derived growth factor (LEDGF/p75) is a cellular cofactor of HIV-1 integrase (IN) that interacts with IN through its IN binding domain (IBD) and tethers the viral pre-integration complex to the host cell chromatin. Here we report the generation of a human somatic LEDGF/p75 knockout cell line that allows the study of spreading HIV-1 infection in the absence of LEDGF/p75. By homologous recombination the exons encoding the LEDGF/p75 IBD (exons 11 to 14) were knocked out. In the absence of LEDGF/p75 replication of laboratory HIV-1 strains was severely delayed while clinical HIV-1 isolates were replication-defective. The residual replication was predominantly mediated by the Hepatoma-derived growth factor related protein 2 (HRP-2), the only cellular protein besides LEDGF/p75 that contains an IBD. Importantly, the recently described IN-LEDGF/p75 inhibitors (LEDGINs) remained active even in the absence of LEDGF/p75 by blocking the interaction with the IBD of HRP-2. These results further support the potential of LEDGINs as allosteric integrase inhibitors

    HIV-1 IN/Pol recruits LEDGF/p75 into viral particles

    Get PDF
    Background: The dynamic interaction between HIV and its host governs the replication of the virus and the study of the virus-host interplay is key to understand the viral lifecycle. The host factor lens epithelium-derived growth factor (LEDGF/p75) tethers the HIV preintegration complex to the chromatin through a direct interaction with integrase (IN). Small molecules that bind the LEDGF/p75 binding pocket of the HIV IN dimer (LEDGINs) block HIV replication through a multimodal mechanism impacting early and late stage replication including HIV maturation. Furthermore, LEDGF/p75 has been identified as a Pol interaction partner. This raised the question whether LEDGF/p75 besides acting as a molecular tether in the target cell, also affects late steps of HIV replication. Results: LEDGF/p75 is recruited into HIV-1 particles through direct interaction with the viral IN (or Pol polyprotein) and is a substrate for HIV-1 protease. Incubation in the presence of HIV-1 protease inhibitors resulted in detection of full-length LEDGF/p75 in purified viral particles. We also demonstrate that inhibition of LEDGF/p75-IN interaction by specific mutants or LEDGINs precludes incorporation of LEDGF/p75 in virions, underscoring the specificity of the uptake. LEDGF/p75 depletion did however not result in altered LEDGIN potency. Conclusion: Together, these results provide evidence for an IN/Pol mediated uptake of LEDGF/p75 in viral particles and a specific cleavage by HIV protease. Understanding of the possible role of LEDGF/p75 or its cleavage fragments in the viral particle awaits further experimentation
    corecore