24 research outputs found
Multigrain parallel Delaunay mesh generation: Challenges and opportunities for multithreaded architectures
Given the importance of parallel mesh generation in large-scale scientific applications and the proliferation of multilevel SMTbased architectures, it is imperative to obtain insight on the interaction between meshing algorithms and these systems. We focus on Parallel Constrained Delaunay Mesh (PCDM) generation. We exploit coarse-grain parallelism at the subdomain level and fine-grain at the element level. This multigrain data parallel approach targets clusters built from low-end, commercially available SMTs. Our experimental evaluation shows that current SMTs are not capable of executing fine-grain parallelism in PCDM. However, experiments on a simulated SMT indicate that with modest hardware support it is possible to exploit fine-grain parallelism opportunities. The exploitation of fine-grain parallelism results to higher performance than a pure MPI implementation and closes the gap between the performance of PCDM and the state-of-the-art sequential mesher on a single physical processor. Our findings extend to other adaptive and irregular multigrain, parallel algorithms.
Algorithm, software, and hardware optimizations for Delaunay mesh generation on simultaneous multithreaded architectures
This article focuses on the optimization of PCDM, a parallel, two-dimensional (2D) Delaunay mesh generation application, and its interaction with parallel architectures based on simultaneous multithreading (SMT) processors. We first present the step-by-step effect of a series of optimizations on performance. These optimizations improve the performance of PCDM by up to a factor of six. They target issues that very often limit the performance of scientific computing codes. We then evaluate the interaction of PCDM with a real SMT-based SMP system, using both high-level metrics, such as execution time, and low-level information from hardware performance counters. Published by Elsevier Inc