78 research outputs found
An eco-friendly hybrid urban computing network combining community-based wireless LAN access and wireless sensor networking
Computer-enhanced smart environments, distributed environmental monitoring, wireless communication, energy conservation and sustainable technologies, ubiquitous access to Internet-located data and services, user mobility and innovation as a tool for service differentiation are all significant contemporary research subjects and societal developments. This position paper presents the design of a hybrid municipal network infrastructure that, to a lesser or greater degree, incorporates aspects from each of these topics by integrating a community-based Wi-Fi access network with Wireless Sensor Network (WSN) functionality. The former component provides free wireless Internet connectivity by harvesting the Internet subscriptions of city inhabitants. To minimize session interruptions for mobile clients, this subsystem incorporates technology that achieves (near-)seamless handover between Wi-Fi access points. The WSN component on the other hand renders it feasible to sense physical properties and to realize the Internet of Things (IoT) paradigm. This in turn scaffolds the development of value-added end-user applications that are consumable through the community-powered access network. The WSN subsystem invests substantially in ecological considerations by means of a green distributed reasoning framework and sensor middleware that collaboratively aim to minimize the network's global energy consumption. Via the discussion of two illustrative applications that are currently being developed as part of a concrete smart city deployment, we offer a taste of the myriad of innovative digital services in an extensive spectrum of application domains that is unlocked by the proposed platform
PAPER-64 Constraints On Reionization II: The Temperature Of The z=8.4 Intergalactic Medium
We present constraints on both the kinetic temperature of the intergalactic
medium (IGM) at z=8.4, and on models for heating the IGM at high-redshift with
X-ray emission from the first collapsed objects. These constraints are derived
using a semi-analytic method to explore the new measurements of the 21 cm power
spectrum from the Donald C. Backer Precision Array for Probing the Epoch of
Reionization (PAPER), which were presented in a companion paper, Ali et al.
(2015). Twenty-one cm power spectra with amplitudes of hundreds of mK^2 can be
generically produced if the kinetic temperature of the IGM is significantly
below the temperature of the Cosmic Microwave Background (CMB); as such, the
new results from PAPER place lower limits on the IGM temperature at z=8.4.
Allowing for the unknown ionization state of the IGM, our measurements find the
IGM temperature to be above ~5 K for neutral fractions between 10% and 85%,
above ~7 K for neutral fractions between 15% and 80%, or above ~10 K for
neutral fractions between 30% and 70%. We also calculate the heating of the IGM
that would be provided by the observed high redshift galaxy population, and
find that for most models, these galaxies are sufficient to bring the IGM
temperature above our lower limits. However, there are significant ranges of
parameter space that could produce a signal ruled out by the PAPER
measurements; models with a steep drop-off in the star formation rate density
at high redshifts or with relatively low values for the X-ray to star formation
rate efficiency of high redshift galaxies are generally disfavored. The PAPER
measurements are consistent with (but do not constrain) a hydrogen spin
temperature above the CMB temperature, a situation which we find to be
generally predicted if galaxies fainter than the current detection limits of
optical/NIR surveys are included in calculations of X-ray heating.Comment: companion paper to Ali et al. (2015), ApJ 809, 61; matches version
accepted to ApJ; 11 pages, 7 figure
Asymétrie d’information et marchés financiers : une synthèse de la littérature récente
Cet article est une synthèse des recherches récentes en matière d’asymétrie d’informations sur les marchés financiers. L’impact de différentes hypothèses sur l’existence et l’efficience informationnelle des équilibres est étudié. Le cas de la concurrence parfaite est d’abord analysé (Grossman et Stiglitz, 1980). Puis la concurrence imparfaite est analysée. On distingue deux cas, selon que le bruit qui empêche le prix d’être parfaitement révélateur provient d’une offre exogène (KyIe, 1985, 1989), ou d’une dotation aléatoire des agents informés (Glosten, 1989; Bhattacharya et Spiegel, 1990; Bossaerts et Hughson, 1991). Dans le premier cas, l’équilibre existe toujours. Dans le second cas, il n’existe que si le bruit est assez élevé ou si le support de sa distribution est borné.The impact of different hypotheses on the existence and informativeness of rational expectations equilibria is analyzed within a simple synthetic model. The case of perfect competition is first analyzed (Grossman and Stiglitz, 1980). Second imperfect competition with exogenous noise trading is studied (KyIe 1985, 1989). Informational efficiency is lower than in the previous case, because of the strategic behaviour of the insider. Third, imperfect competition without noise trader, but with unknown random endowments of the informed agent is analyzed (Glosten, 1989; Bhattacharya and Spiegel, 1990; Bossaerts and Hughson, 1991). In contrast with the previous case, equilibrium exists only if there is enough noise
Hydrogen Epoch of Reionization Array (HERA)
The Hydrogen Epoch of Reionization Array (HERA) is a staged experiment to
measure 21 cm emission from the primordial intergalactic medium (IGM)
throughout cosmic reionization (), and to explore earlier epochs of our
Cosmic Dawn (). During these epochs, early stars and black holes
heated and ionized the IGM, introducing fluctuations in 21 cm emission. HERA is
designed to characterize the evolution of the 21 cm power spectrum to constrain
the timing and morphology of reionization, the properties of the first
galaxies, the evolution of large-scale structure, and the early sources of
heating. The full HERA instrument will be a 350-element interferometer in South
Africa consisting of 14-m parabolic dishes observing from 50 to 250 MHz.
Currently, 19 dishes have been deployed on site and the next 18 are under
construction. HERA has been designated as an SKA Precursor instrument.
In this paper, we summarize HERA's scientific context and provide forecasts
for its key science results. After reviewing the current state of the art in
foreground mitigation, we use the delay-spectrum technique to motivate
high-level performance requirements for the HERA instrument. Next, we present
the HERA instrument design, along with the subsystem specifications that ensure
that HERA meets its performance requirements. Finally, we summarize the
schedule and status of the project. We conclude by suggesting that, given the
realities of foreground contamination, current-generation 21 cm instruments are
approaching their sensitivity limits. HERA is designed to bring both the
sensitivity and the precision to deliver its primary science on the basis of
proven foreground filtering techniques, while developing new subtraction
techniques to unlock new capabilities. The result will be a major step toward
realizing the widely recognized scientific potential of 21 cm cosmology.Comment: 26 pages, 24 figures, 2 table
PAPER-64 CONSTRAINTS ON REIONIZATION: THE 21 cm POWER SPECTRUM AT z = 8.4
In this paper, we report new limits on 21 cm emission from cosmic reionization based on a 135 day observing campaign with a 64-element deployment of the Donald C. Backer Precision Array for Probing the Epoch of Reionization in South Africa. This work extends the work presented in Parsons et al. with more collecting area, a longer observing period, improved redundancy-based calibration, improved fringe-rate filtering, and updated power-spectral analysis using optimal quadratic estimators. The result is a new 2σ upper limit on Δ[superscript 2](k) of (22.4 mK)[superscript 2] in the range 0.15 < k < 0.5h Mpc[superscript -1] at z = 8.4. This represents a three-fold improvement over the previous best upper limit. As we discuss in more depth in a forthcoming paper, this upper limit supports and extends previous evidence against extremely cold reionization scenarios. We conclude with a discussion of implications for future 21 cm reionization experiments, including the newly funded Hydrogen Epoch of Reionization Array
Optimizing Sparse RFI Prediction using Deep Learning
Radio Frequency Interference (RFI) is an ever-present limiting factor among
radio telescopes even in the most remote observing locations. When looking to
retain the maximum amount of sensitivity and reduce contamination for Epoch of
Reionization studies, the identification and removal of RFI is especially
important. In addition to improved RFI identification, we must also take into
account computational efficiency of the RFI-Identification algorithm as radio
interferometer arrays such as the Hydrogen Epoch of Reionization Array grow
larger in number of receivers. To address this, we present a Deep Fully
Convolutional Neural Network (DFCN) that is comprehensive in its use of
interferometric data, where both amplitude and phase information are used
jointly for identifying RFI. We train the network using simulated HERA
visibilities containing mock RFI, yielding a known "ground truth" dataset for
evaluating the accuracy of various RFI algorithms. Evaluation of the DFCN model
is performed on observations from the 67 dish build-out, HERA-67, and achieves
a data throughput of 1.6 HERA time-ordered 1024 channeled
visibilities per hour per GPU. We determine that relative to an amplitude only
network including visibility phase adds important adjacent time-frequency
context which increases discrimination between RFI and Non-RFI. The inclusion
of phase when predicting achieves a Recall of 0.81, Precision of 0.58, and
score of 0.75 as applied to our HERA-67 observations.Comment: 11 pages, 7 figure
Mitigating Internal Instrument Coupling for 21 cm Cosmology. II. A Method Demonstration with the Hydrogen Epoch of Reionization Array
We present a study of internal reflection and cross-coupling systematics in Phase I of the Hydrogen Epoch of Reionization Array (HERA). In a companion paper, we outlined the mathematical formalism for such systematics and presented algorithms for modeling and removing them from the data. In this work, we apply these techniques to data from HERA's first observing season as a method demonstration. The data show evidence for systematics that, without removal, would hinder a detection of the 21 cm power spectrum for the targeted Epoch of Reionization (EoR) line-of-sight modes in the range 0.2 h −1 Mpc−1 < < 0.5 h −1 Mpc−1. In particular, we find evidence for nonnegligible amounts of spectral structure in the raw autocorrelations that overlaps with the EoR window and is suggestive of complex instrumental effects. Through systematic modeling on a single night of data, we find we can recover these modes in the power spectrum down to the integrated noise floor, achieving a dynamic range in the EoR window of 106 in power (mK2 units) with respect to the bright galactic foreground signal. Future work with deeper integrations will help determine whether these systematics can continue to be mitigated down to EoR levels. For future observing seasons, HERA will have upgraded analog and digital hardware to better control these systematics in the field
- …