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ABSTRACT

In this paper, we report new limits on 21 cm emission from cosmic reionization based on a 135 day observing
campaign with a 64-element deployment of the Donald C. Backer Precision Array for Probing the Epoch of
Reionization in South Africa. This work extends the work presented in Parsons et al. with more collecting area, a
longer observing period, improved redundancy-based calibration, improved fringe-rate filtering, and updated
power-spectral analysis using optimal quadratic estimators. The result is a new 2σ upper limit on Δ2(k) of
(22.4 mK)2 in the range k h0.15 0.5 Mpc 1< < - at z = 8.4. This represents a three-fold improvement over the
previous best upper limit. As we discuss in more depth in a forthcoming paper, this upper limit supports and
extends previous evidence against extremely cold reionization scenarios. We conclude with a discussion of
implications for future 21 cm reionization experiments, including the newly funded Hydrogen Epoch of
Reionization Array.

Key words: cosmology: observations – dark ages, reionization, first stars – early universe –

instrumentation: interferometers – intergalactic medium

1. INTRODUCTION

The cosmic dawn of the universe, which begins with the
birth of the first stars and ends approximately one billion years
later with the full reionization of the intergalactic medium
(IGM), represents one of the last unexplored phases in cosmic
history. Studying the formation of the first galaxies and their
influence on the primordial IGM during this period is among
the highest priorities in modern astronomy. During our cosmic
dawn, IGM characteristics depend on the matter density field,
the mass and clustering of the first galaxies (Lidz et al. 2008),
their ultraviolet luminosities (McQuinn et al. 2007), the
abundance of X-ray sources and other sources of heating
(Pritchard & Loeb 2008; Mesinger et al. 2013), and higher-
order cosmological effects like the relative velocities of
baryons and dark matter (McQuinn & O’Leary 2012; Visbal
et al. 2012).

Recent measurements have pinned down the bright end of
the galaxy luminosity function at z  8 (Bouwens et al. 2010;
Schenker et al. 2013) and have detected a few sources at even
greater distances (Ellis et al. 2013; Oesch et al. 2013). In
parallel, a number of indirect techniques have constrained the
evolution of the neutral fraction with redshift. Examples
include integral constraints on reionization from the optical
depth of Thomson scattering to the CMB (Planck

Collaboration et al. 2014, 2015), large-scale CMB polarization
anisotropies (Page et al. 2007), and secondary temperature
fluctuations generated by the kinetic Sunyaev–Zel’dovich
effect (Mesinger et al. 2012; Zahn et al. 2012; Battaglia
et al. 2013; Park et al. 2013; George et al. 2014). Other probes
of the tail end of reionization include observations of resonant
scattering of Lyα by the neutral IGM toward distant quasars
(the “Gunn–Peterson” effect; Fan et al. 2006), the demo-
graphics of Lyα emitting galaxies (Schenker et al. 2013; Treu
et al. 2013; Faisst et al. 2014), and the Lyα absorption profile
toward very distant quasars (Bolton et al. 2011; Bosman &
Becker 2015). As it stands, the known population of galaxies
falls well short of the requirements for reionizing the universe
at redshifts compatible with CMB optical depth measurements
(Robertson et al. 2013, 2015), driving us to deeper observa-
tions with, e.g., James Webb Space Telescope and ALMA, to
reveal the fainter end of the luminosity function.
Complementing these probes of our cosmic dawn are

experiments targeting the 21 cm “spin-flip” transition of neutral
hydrogen at high redshifts. This signal has been recognized as a
potentially powerful probe of the cosmic dawn (Furlanetto
et al. 2006; Morales & Wyithe 2010; Pritchard & Loeb 2012)
that can reveal large-scale fluctuations in the ionization state
and temperature of the IGM, opening a unique window into the
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complex astrophysical interplay between the first luminous
structures and their surroundings. Cosmological redshifting
maps each observed frequency with a particular emission time
(or distance), enabling 21 cm experiments to eventually
reconstruct three-dimensional pictures of the time-evolution
of large scale structure in the universe. While such maps can
potentially probe nearly the entire observable universe (Mao
et al. 2008), in the near term, 21 cm cosmology experiments are
focusing on statistical measures of the signal.

There are two complementary experimental approaches to
accessing 21 cm emission from our cosmic dawn. So-called
“global” experiments such as EDGES (Bowman &
Rogers 2010), the LWA (Ellingson et al. 2013), LEDA
(Greenhill & Bernardi 2012; Bernardi et al. 2015), DARE
(Burns et al. 2012), SciHi (Voytek et al. 2014), BigHorns
(Sokolowski et al. 2015), and SARAS (Patra et al. 2015) seek
to measure the mean brightness temperature of 21 cm relative
to the CMB background. These experiments typically rely on
auto-correlations from a small number of dipole elements to
access the sky-averaged 21 cm signal, although recent work is
showing that interferometric cross-correlations may also be
used to access the signal (Vedantham et al. 2015; Presley et al.
2015). In contrast, experiments targeting statistical power-
spectral measurements of the 21 cm signal employ larger
interferometers. Examples of such interferometers targeting the
reionization signal include the GMRT (Paciga et al. 2013),
LOFAR (van Haarlem et al. 2013), the MWA (Tingay
et al. 2013), the 21CMA (Peterson et al. 2004; Wu 2009),
and the Donald C. Backer Precision Array for Probe the Epoch
of Reionization (PAPER; Parsons et al. 2010).

PAPER is unique for being a dedicated instrument with the
flexibility to explore non-traditional experimental approaches,
and is converging on a self-consistent approach to achieving
both the level of foreground removal and the sensitivity that are
required to detect the 21 cm reionization signal. This approach
focuses on spectral smoothness as the primary discriminant
between foreground emission and the 21 cm reionization signal
and applies an understanding of interferometric responses in
the delay domain to identify bounds on instrumental chroma-
ticity (Parsons et al. 2012b, hereafter P12b). This type of
“delay-spectrum” analysis permits data from each interfero-
metric baseline to be analyzed separately without requiring
synthesis imaging for foreground removal. As a result, PAPER
has been able to adopt new antenna configurations that are
densely packed and highly redundant. These configurations are
poorly suited for synthesis imaging but deliver a substantial
sensitivity boost for power-spectral measurements that are not
yet limited by cosmic variance (Parsons et al. 2012a,
hereafter P12a). Moreover, they are particularly suited for
redundancy-based calibration (Wieringa 1992; Liu et al. 2010;
Zheng et al. 2014), on which PAPER now relies to solve for
the majority of the internal instrumental degrees of freedom
(dof). The efficacy of this approach was demonstrated with
data from a 32-antenna deployment of PAPER, which achieved
an upper limit on the 21 cm power spectrum Δ2(k) ⩽ (41 mK)2

at k h0.27 Mpc 1= - (Parsons et al. 2014, hereafter P14). That
upper limit improved over previous limits by orders of
magnitude, showing that the early universe was heated from
adiabatic cooling, presumably by emission from high-mass
X-ray binaries or mini-quasars.

In this paper, we improve on this previous result using a
larger 64-element deployment of PAPER and a longer

observing period, along with better redundant calibration, an
improved fringe-rate filtering technique, and an updated power-
spectrum estimation pipeline. The result is an upper limit on
Δ2(k) of (22.4 mK)2 in the range k h0.15 0.5 Mpc 1< < - at
z = 8.4. This result places constraints on the spin temperature
of the IGM, and as is shown in a companion paper, Pober et al.
(2015), this supports and extends previous evidence against
extremely cold reionization scenarios. In Section 2 we describe
the observations used in this analysis. In Sections 3 and 4, we
discuss the calibration and the stability of the PAPER
instrument. We then move on to a discussion of our power-
spectrum analysis pipeline in Section 5. We present our results
in Section 6 along with new constraints on the 21 cm power
spectrum. We discuss these results in Section 7 and conclude in
Section 8.

2. OBSERVATIONS

We base our analysis on drift-scan observations with 64 dual-
polarization PAPER antennas (hereafter, “PAPER-64”) deployed
at the Square Kilometre Array South Africa (SKA-SA) reserve in
the Karoo desert in South Africa (30:43:17 ◦. 5 S, 21:25:41 ◦.8 E).
Each PAPER element features a crossed-dipole design measuring
two linear (X, Y) polarizations. The design of the PAPER
element, which features spectrally and spatially smooth responses
down to the horizon with a FWHM of 60°, is summarized in
Parsons et al. (2010) and Pober et al. (2012). For this analysis,
we use only the XX and YY polarization cross-products.
As shown in Figure 1, PAPER-64 employs a highly

redundant antenna layout where multiple baselines measure
the same Fourier mode on the sky (P12a; P14). We rely on all
2016 baselines for calibration, but only use a subset of the
baselines for the power spectrum analysis. This subset consists
of three types of baselines: the 30 m strictly east–west baselines
between adjacent columns (e.g., 49–41, black in Figure 1;
hereafter referred to as fiducial baselines), 30 m east–west
baselines whose eastern element is staggered one row up (e.g.,

Figure 1. Antenna position within the PAPER-64 array. This analysis only
makes use of east–west baselines between adjacent columns that have row
separations of zero (black; e.g., 49–41, 41–47, 10–3,...) one in the northward
direction (orange; e.g., 10–41, 3–47, 9–3,...) or one in the southward direction
(blue; e.g., 49–3, 41–25, 10–58,...). Because of their high levels of redundancy,
these baselines constitute the bulk of the array’s sensitivity for power spectrum
analysis.

2

The Astrophysical Journal, 809:61 (21pp), 2015 August 10 Ali et al.



10–41, orange in Figure 1), and those whose eastern element is
one row down (e.g., 49–3, blue in Figure 1). These baseline
groups consist of 56, 49, and 49 baselines, respectively. We
define a redundant group of baselines as being the set of
baselines that have the same grid spacing; baselines in each of
the three redundant groups described above are instantaneously
redundant and therefore measure the same Fourier modes on
the sky. Thus, within a redundant group, measurements from
baselines may be coherently added to build power-spectrum
sensitivity as N rather than N , where N is the number of
baselines added.

PAPER-64 conducted nighttime observations over a 135 day
period from 2012 November 8 (JD 2456240) to 2013 March 23

(JD 2456375). Since solar time drifts with respect to local
sidereal time (LST), this observing campaign yielded more
samples of certain LSTs (and hence, sky positions) than others.
For the power spectrum analysis, we use observations between
0:00 and 8:30 hr LST. This range corresponds to a “cold patch”
of sky away from the galactic center where galactic
synchrotron power is minimal, but also accounts for the
weighting of coverage in LST. Figure 2 shows our observing
field with the contours labeling the beam weighted observing
time relative to the peak, directly over head the array.
The PAPER-64 correlator processes a 100–200MHz

bandwidth, first channelizing the band into 1024 channels of
width 97.6 kHz, and then cross multiplying every antenna and

Figure 2. Global Sky Model (de Oliveira-Costa et al. 2008), illustrating foregrounds to the 21 cm cosmological signal, with contours indicating beam-weighted
observing time (relative to peak) for the PAPER observations described in Section 2. The map is centered at 6:00 hr in R.A.

Figure 3. Stages of power-spectrum analysis. Black lines indicate data flow; red lines indicate Monte Carlo simulations used to measure signal loss. Yellow boxes
indicate stages that by construction have negligible signal loss. Signal loss in other stages is tabluted in Table 1.
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polarization with one another for a total of 8256 cross products,
including auto correlations. Following the architecture in
Parsons et al. (2008), this correlator is based on CASPER16

open-source hardware and signal processing libraries (Parsons
et al. 2006). Sixteen ROACH boards each hosting eight 8 bit
analog-to-digital converters digitize and channelize antenna
inputs. New to this correlator relative to previous PAPER
correlators (Parsons et al. 2010), the cross multiplication
engine is implemented on eight servers each receiving
channelized data over two 10 Gb Ethernet links. Each server
hosts two NVIDIA GeForce 580 GPUs running the open-
source cross-correlation code developed by Clark et al. (2013).
Visibilities are integrated for 10.7 s on the GPUs before being
written to disk. All polarization cross-products are saved,
although the work presented here only made use of the XX and
YY polarization products.

3. CALIBRATION

Foreground contamination and signal sensitivity represent
the two major concerns for 21 cm experiments targeting power
spectrum measurements. Sources of foregrounds include
galactic synchrotron radiation, supernova remnants, and
extragalactic radio sources. In the low-frequency radio band
(50–200MHz) where 21 cm reionization experiments operate,
emission from these foregrounds is brighter than the predicted
reionization signal by several orders of magnitude (Santos
et al. 2005; Ali et al. 2008; de Oliveira-Costa et al. 2008; Jelić
et al. 2008; Bernardi et al. 2009, 2010; Ghosh et al. 2011).
However, the brightest foregrounds are spectrally smooth, and
this provides an important hook for their isolation and removal
(Liu et al. 2009a; Petrovic & Oh 2011; Liu & Tegmark 2012).
Unfortunately, interferometers, which are inherently chromatic
instruments, interact with spectrally smooth foregrounds to
produce unsmooth features that imitate line of sight Fourier
modes over cosmological volumes (P12b; Morales et al. 2006;
Bowman et al. 2009a). One approach to solving this problem
involves an ambitious calibration and modeling approach to
spatially localize and remove foreground contaminants (Liu
et al. 2009b; Bowman et al. 2009b; Harker et al. 2009; Sullivan
et al. 2012; Chapman et al. 2013). Perhaps the most impressive
example of this approach is being undertaken by LOFAR,
where dynamic ranges of 4.7 orders of magnitude have been
achieved in synthesis images (Yatawatta et al. 2013), although
it is expected that additional suppression of smooth-spectrum
foreground emission will be necessary (Chapman et al. 2013).

The analysis for this paper employs a contrasting approach
based on the fact that the chromaticity of an interferometer is
fundamentally related to the length of an interferometric
baseline. This relationship, known colloquially as “the wedge,”
was derived analytically (P12b; Vedantham et al. 2012;
Thyagarajan et al. 2013; Liu et al. 2014a, 2014b), and has
been confirmed in simulations (Datta et al. 2010; Hazelton
et al. 2013) and observationally (Pober et al. 2013; Dillon
et al. 2014). As described in P12b, the wedge is the result of the
delay between when a wavefront originating from foreground
emission arrives at the two antennas in a baseline. The fact that
this delay is bounded by the light-crossing time between two
antennas (which we call the “horizon limit” since such a
wavefront would have to originate from the horizon) places a
fundamental bound on the chromaticity of an interferometric

baseline. So far, PAPER has had the most success in exploiting
this bound (P14; Jacobs et al. 2015). In this analysis, we
continue to use the properties of the wedge in order to isolate
and remove smooth spectrum foregrounds.
As illustrated in Figure 2, our analysis pipeline begins by

running a compression algorithm to reduce the volume of our
raw data by a factor of 70. As described in Appendix A of P14,
this is achieved by first performing statistical flagging to
remove radio frequency interference (RFI) at the 6σ level,
applying low-pass delay and fringe-rate filters that limit signal
variation to delay scales of 1 st m∣ ∣ and fringe-rate scales of
f  23 mHz, and then decimating to critical Nyquist sampling
rates of 493 kHz along the frequency axis and 42.9 s along the
time axis. We remind the reader that while information is lost
in this compression, these sampling scales preserve emission
between k h0.5 0.5 Mpc 1- -

⩽ ⩽ that rotates with the sky,
making this an essentially lossless compression for measure-
ments of the 21 cm reionization signal in these ranges.
After compression, we calibrate in two stages, as described

in more detail below. The first stage (Section 3.1) uses
instantaneous redundancy to solve for the majority of the per-
antenna internal dof in the array. In the second stage
(Section 3.2), standard self-calibration is used to solve for a
smaller number of absolute phase and gain parameters that
cannot be solved by redundancy alone. After suppressing
foregrounds with a wide-band delay filter (Section 3.3) and
additional RFI flagging and crosstalk removal, we average the
data in LST (Section 3.4) and apply a fringe-rate filter
(Section 3.5) to combine time-domain data. Finally, we use an
optimal quadratic estimator (OQE) (Section 5) to make our
estimate of the 21 cm power spectrum.

3.1. Relative Calibration

Redundant calibration has gained attention recently as a
particularly powerful way to solve for internal dof in radio
interferometric measurements without simultaneously having
to solve for the distribution of sky brightness (Wieringa 1992;
Liu et al. 2010; Noorishad et al. 2012; Marthi & Chenga-
lur 2014; Zheng et al. 2014; P14). The grid-based configuration
of PAPER antennas allows a large number of antenna
calibration parameters to be solved for on the basis of
redundancy (P12a; P14; Zheng et al. 2014). Multiple baselines
of the same length and orientation measure the same sky signal.
Differences between redundant baselines result from differ-
ences in the signal chain, including amplitude and phase effects
attributable to antennas, cables, and receivers. Redundant
calibration only constrains the relative complex gains between
antennas and is independent of the sky. Since redundant
calibration preserves signals common to all redundant base-
lines, this type of calibration does not result in signal loss.
In practice, redundant calibration often takes on two flavors:

log calibration (LOGCAL) and linear calibration (LINCAL)
(Liu et al. 2010; Zheng et al. 2014). LOGCAL uses logarithms
applied to visibilities,

v g g y n , (1)ij i j i j ij
* res= +-

where g denotes the complex gain of antennas indexed by i and
j, and y represents the “true” visibility measured by the
baseline, to give a linearized system of equations

v g g ylog log log log . (2)ij i j i j
*= + + -16 http://casper.berkeley.edu
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In solving for per-antenna gain parameters with a number of
measurements that scales quadratically with antenna number,
redundancy gives an over-constrained system of equations that
can be solved using traditional linear algebra techniques. While
LOGCAL is useful for arriving at a coarse solution from initial
estimates that are far from the true value, LOGCAL has the
shortcoming of being a biased by the asymmetric behavior of
additive noise in the logarithm (Liu et al. 2010).

LINCAL, on the other hand, uses a Taylor expansion of the
visibility around initial estimates of the gains and visibilities,

v g g y g g y g g y g g y , (3)ij i j i j i j i j i j i j i j i j
0* 0 0 1* 0 0 0* 1 0 0* 0 1= + + +- - - -

where 0 denotes initial estimates and 1 represents the
perturbation to the original estimate and is the solutions we
fit for. Using initial estimates taken from LOGCAL, LINCAL
constructs an unbiased estimator.

Redundant calibration was performed using OMNICAL17
—

an open-source redundant calibration package that is relatively
instrument agnostic (Zheng et al. 2014). This package
implements both LOGCAL and LINCAL, solving for a
complex gain solution per antenna, frequency, and integration.
The solutions are then applied to visibilities and the results are
shown in Figure 4.

In addition to solving for gain solutions, OMNICAL also
characterizes the quality of the calibration parameters by
calculating the χ2 for every integration. As defined in Zheng

et al. (2014),

v y g g
, (4)

ij

ij i j i j

ij

2
* 2

2åc
s

=
- -∣ ∣

where σ2 is the noise in the visibilities. The χ2 measures sum of
the deviation of measured visibilities to that of the best fit
model derived from the LINCAL relative to a noise model, and
gives us a tool to use in order to check the quality of our data.
The number of dof, as defined in Zheng et al. (2014), is given
by

( )
N N

N N N

dof

2 2 , (5)

measurements parameters

baselines antennas unique baselines

= -

= - +

and is effectively the number of visibilities for which χ2 is
calculated. If the data are noise-dominated, χ2/dof is drawn
from a χ2 distribution with μ = 1 and σ2 = 2/dof. The
calculated χ2/dof for every frequency and integration of a
fiducial day of observation in this season and for the fiducial
power spectrum baselines is shown in Figure 5, demonstrating
the stability of the PAPER instrument.
We measure a mean χ2/dof of 1.9. This indicates that the

redundant calibration solutions, while a substantial improve-
ment over the previous PAPER-32 calibration (P14), do not
quite result in residuals that are thermal noise dominated.
Possible sources of this excess include instrumental crosstalk
and poorly performing signal chains. While the latter will be
down-weighted by the inverse of the estimated signal
covariance described in Section 5, crosstalk is a defect in the

Figure 4. PAPER visibilities plotted in the complex plane before (left) and after (right) the application of the improved redundancy-based calibration with OMNICAL
(Zheng et al. 2014). All baselines in the array measured at 159 MHz for a single time integration are plotted. Instantaneously redundant baselines are assigned the
same symbol/color. The tighter clustering of redundant measurements with OMNICAL indicates improved calibration.

17 https://github.com/jeffzhen/omnical
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data that must be addressed. Crosstalk caused by the cross-
coupling of signals between antennas reveals itself as a static
complex bias to a visibility that varies on timescales much
longer than typical fringe rates. This effect skews the
distribution of the χ2 of the residuals away from 1. To
minimize crosstalk, we first use OMNICAL to solve for
antenna-dependent gains, and then average the residual
deviations from redundancy over 10 minute windows before
subtracting the average from the original visibilities. This
crosstalk removal preserves signals common to redundant
baseline groups (such as the 21 cm signal). Unfortunately, it
also preserves a term that is the average of the crosstalk of all
baselines in the redundant group. This residual crosstalk is
removed by a fringe-rate filter later in the analysis.

3.2. Absolute Calibration

After solving for the relative complex gains of the antennas
using redundant calibration, an overall phase and gain
calibration remains unknown. We use the standard self
calibration method for radio interferometers to solve for the
absolute phase calibration. We used Pictor A, Fornax A, and
the Crab Nebula to fit for the overall phase solutions. Figure 6
shows an image of the field with Pictor A (5:19:49.70,
−45:46:45.0) and Fornax A (3:22:41.70, −37:12:30.0).

We then set our over all flux scale by using Pictor A as our
calibrator source with source spectra derived in Jacobs et al.
(2013),

S S
150 MHz

, (6)150
n

= ´
æ
è
ççç

ö
ø
÷÷÷n

a

where S150 = 381.88 Jy ± 5.36 and α = −0.76 ± 0.01, with 1σ
error bars.

To derive the source spectrum from our measurements, we
use data that have been LST-averaged prior to the wide-band
delay filter described in Section 3.3, for the hour before and after
the transit of Pictor A. We image a 30° × 30° field of view for
every frequency channel for each 10minute snapshot and apply
uniform weights to the gridded visibilities. We account for the
required three-dimensional Fourier transform in wide field
imaging by using the w-stacking algorithm implemented in
WSclean (Offringa et al. 2014) although we note that the
standard w-projection algorithm implemented in CASA18 gives
similar performances as the PAPER array is essentially

instantaneously coplanar. A source spectrum is derived for each
snapshot by fitting a two-dimensional Gaussian to Pictor A by
using the PyBDSM19 source extractor. Spectra are optimally
averaged together by weighting them with the primary beam
model evaluated in the direction of Pictor A. To fit our bandpass,
we divide the model spectrum by the measured one and fit a 9th
order polynomial over the 120–170MHz frequency range.
Figure 7 shows the calibrated Pictor A spectrum and the model
spectrum from Jacobs et al. (2013). Also plotted are the 1σ error
bars derived from the PyBDSM source extractor and averaged
over the multiple snapshots used after being weighted by the
beam-squared.
Fitting a polynomial to the bandpass has the potential for

signal loss which would include suppressing modes that may
contain the cosmological signal. In order to quantify the signal
loss associated with fitting a ninth degree polynomial to the
bandpass, we run a Monte Carlo simulation of the effect the
bandpass has on a model 21 cm reionization signal. We
construct a model baseline visibility as a Gaussian random
signal multiplied by the derived bandpass for every indepen-
dent mode measured. We calculate the total number of
independent modes by counting the number of independent
uv-modes sampled for the different baseline types over the two
hour time interval used to measure the bandpass. We average
each mode together and fit a 9th degree polynomial. Using this
as our measured bandpass for this simulated signal, we finally
compare the power spectrum from the output of the simulated
signal to the input power spectrum as a function fo k-mode. We
find that between k0.06 0.06- < < , the width of our
wideband delay filter described below, the signal loss is less
than 3% and at the mode right outside the above limit is

Figure 5. Log of χ2 per degree of freedom of all baseline residuals after the
application of OMNICAL. The plot comprises a observations over one day,
with a frequency resolution of 493 kHz and a time resolution of 42.9 s.

Figure 6. PAPER-64 image of a field including Pictor A and Fornax A, with
white circles indicating catalog positions (Jacobs et al. 2011). Image was
synthesized with two hours of visibilities while Pictor A was in transit and
53 MHz of instantaneous bandwidth from 120 to 173 MHz. Image quality is
limited by the redundant configuration of the array (e.g., grating lobes as a
result of periodic antenna spacing, elongated lobes arising from poor uv-
coverage in the north–south direction). Nonetheless, this image demonstrates
accurate phase calibration over a wide field of view.

18 http://casa.nrao.edu 19 http://www.lofar.org/wiki/doku.php?id=public:user_software:pybdsm
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2 × 10−7%. We apply the latter correction factor for all modes
outside the width of the delay filter to the final power spectrum.

3.3. Wideband Delay Filtering

Before implementing our foreground removal techniques,
we combine the two linear polarizations for an estimate of
Stokes I as per Moore et al. (2013). Namely, Stokes I can be
estimated as

( )V V V
1

2
, (7)I XX YY= +

where VXX and VYY are the visibilities of the two linear
polarizations measured by the interferometer. There are some
important caveats to the estimate of Stokes I provided by
Equation (7). One important caveat is that it neglects the beam
asymmetry between the two linear polarization states. This
mismatch can cause polarization leakage from Stokes Q into
Stokes I, thus contaminating our measurement of the power
spectrum with any polarized emission from the sky. This effect
for PAPER, as shown in Moore et al. (2013), leaks 4% of Q in
to I in amplitude (2.2 × 10−3 in the respective power spectra).
We take the conservative approach and do not correct for this
effect, noting that the leakage of Q in to I will result in positive
power, increasing our limits.

Foreground removal techniques discussed in the literature
include spectral polynomial fitting (Wang et al. 2006; Bowman
et al. 2009a; Liu et al. 2009a), principal component analysis
(Liu & Tegmark 2011; Paciga et al. 2011; Masui et al. 2013;
Paciga et al. 2013), non-parametric subtractions (Harker
et al. 2009; Chapman et al. 2013), and inverse covariance
weighting (Liu & Tegmark 2011; Dillon et al. 2013, 2014; Liu
et al. 2014a, 2014b), Fourier-mode filtering Petrovic & Oh
(2011), and per-baseline delay filtering described in P12b. This
delay-spectrum filtering technique is well-suited to the

maximum redundancy PAPER configuration, which is not
optimized for the other approaches where high fidelity imaging
is a prerequisite. The delay-spectrum foreground filtering
method is described in detail by P14; its application is
unchanged here. In summary; we Fourier transform each
baseline spectrum into the delay domain

V W A I e e d

W A I

˜ ·

˜ ˜ ˜ ( ), (8)
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where Aν is the frequency dependent antenna response, Wν is a
sampling function that includes RFI flagging and a Blackman-
Harris tapering function that minimizes delay-domain scatter-
ing from RFI flagging, and Iν is the source spectrum. In the
delay domain, a point source appears as a δ-function at delay
τg, convolved by the Fourier transforms of the source spectrum,
the antenna response, and the sampling function. We note that
the antenna response effectively determines a finite bandpass,
which imposes a lower bound of 1/B ≈ 10 ns on the width of
any delay-domain convolving kernel. As per Parsons & Backer
(2009) and P14, we deconvolve the kernel resulting from W(τ)
using an iterative CLEAN-like procedure (Högbom 1974)
restricting CLEAN components to fall within the horizon plus a
15 ns buffer that includes the bulk of the kernels convolving the
δ-function in Equation (8). To remove the smooth spectrum
foreground emission we subtract the CLEAN components from
the original visibility.
Applying the delay filter to fiducial baselines used in the

power spectrum analysis, foregrounds are suppressed by ∼4
orders of magnitude in power, or −40 dB of foreground
suppression, as seen in Figure 8. As discussed in P14, there is a
small amount of signal loss associated with this filter. For the
baselines and filter parameters used, the loss was found to be
4.8% for the first mode outside of the horizon, 1.3% for the
next mode out, and less than 0.0015% for the higher modes.

3.4. Binning in LST

After the wideband delay filter, we remove a second layer of
RFI that was overshadowed by the foreground signal. RFI are
excised with a filter which flags values 3σ above the median
using a variance calculated in a localized time and frequency
window.
We then average the entire season in LST with 43 s bin

widths, matching the cadence of the compressed data. The full
season was 135 days long; of these, 124 days were included in
the average. We make two separate LST-binned data sets,
averaging every other Julian day together to obtain an “even”
and “odd” data set. The use of these two data sets allows us to
construct an unbiased power spectrum estimate.
Sporadic RFI events result in measurements that, in any

individual LST bin, deviate from the Gaussian distribution
characteristic of thermal noise. To catch these events, we
compute the median of a LST bin for each frequency and flag
values 3σ above the median, before averaging. Since we are
narrowing the distribution of visibilities about the median, the
measured thermal noise variance is not preserved under this
filter. However, since the central value is preserved, the
expectation value of the measured visibility in each LST bin is
unchanged, and there is no associated signal loss for power
spectrum measurements. Moreover, because errors are

Figure 7. Measured spectrum of Pictor A in Stokes I (blue) relative to its
catalog value (black; Jacobs et al. 2013). Flux density measurements are
extracted from images of Pictor A, made independently for each frequency
channel in 10 minute snapshots as Pictor transits between hour angles of −1:49
and 1:10. Each measurement is then divided by the PAPER beam model and
averaged to obtain the measured spectrum, which serves to characterize the flux
scale of the PAPER-64 observations. Error bars indicate 68% confidence
intervals, derived from the Gaussian fits in the source extractor used to measure
the flux density in PyBDSM, combined from all snapshots.
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estimated empirically through bootstrapping (see Section 5.4),
the slight increase in measurement error associated with
truncating the tails of the Gaussian distribution are naturally
accounted for.

3.5. Fringe-rate Filtering

By averaging visibilities in time, we aim to maximize
sensitivity by coherently combining repeated measurements of
k-modes before squaring these measurements and averaging over
independent k-modes to estimate the power spectrum amplitude.
This is mathematically similar to the more traditional process of
gridding in the uv plane, but applied to a single baseline.
However, rather than applying a traditional box-car average, we
can apply a kernel—a so-called “fringe-rate” filter—that weights
different temporal rates by the antenna beam corresponding to
the parts of the sky moving at the same rate.

For a given baseline and frequency, different parts of the sky
exhibit different fringe-rates. Maximum fringe rates are found
along the equatorial plane, where the rotation rate of the sky is
highest, and zero fringe rates are found at the poles, where the
sky does not rotate and hence sources do not move through the
fringes of a baseline (Parsons & Backer 2009). Fringe rates are

not constant as a function of latitude. Bins of constant fringe
rate correspond to rings in R.A. and decl., where the east–west
projection of a baseline projected toward a patch of the sky is
constant. We use this fact in conjunction with the rms beam
response for each contour of constant fringe rate to construct a
time average kernel or “fringe-rate filter.”
As examined in Parsons et al. (2015), it is possible to tailor

fringe-rate filters to optimally combine time-ordered data for
power-spectrum analysis. Fringe-rate filters can be chosen that
up-weight points of the sky where our instrument is more
sensitive and down-weight those points farther down in the
primary beam, which are less sensitive. For white noise, all
fringe-rate bins will contain the same amount of noise, but the
amount of signal in each bin is determined by the primary beam
response on the sky. By weighting fringe-rate bins by the rms
of the beam response, we can get a net increase in sensitivity.
Applying this filter effectively weights the data by another

factor of the beam area, changing the effective primary beam
response,20 A(l, m) (Parsons et al. 2015). By utilizing prior

Figure 8. Visibilities measured by a fiducial baseline in the PAPER-64 array, averaged over 135 days of observation. From left to right, columns represent data that:
(1) contain foregrounds prior to the application of a wideband delay filter or fringe-rate filtering, (2) are fringe-rate filtered but not delay filtered, (3) are delay filtered
at 15 ns beyond the horizon limit but are not fringe-rate filtered, (4) are both delay and fringe-rate filtered, and (5) are delay and fringe-rate filtered and have been
averaged over all redundant measurements of this visibility. The top row shows signal amplitude on a logarithmic scale; the bottom row illustrates signal phase.
Dashed lines indicate the 0:00–8:30 range in LST used for power spectrum analysis. The putative crosstalk is evident in the center panel as constant phase features
which do not fringe as the sky. The two right panels show some residual signal in the phase structure which is present at low delay. Away from the edges of the
observing band, over four orders of magnitude of foreground suppression is evident.

20 The angular area in Equation (24) will reflect the new angular area
corresponding to the change in beam area.
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knowledge about the beam area, we are selectively down-
weighting areas on the sky contributing little signal. This will
result in a net improvement in sensitivity depending on the
shape of the beam and the decl. of the array. For PAPER, this
filter roughly doubles the sensitivity of our measurements.

Generally, a fringe-rate filter integrates visibilities in time.
For a fringe-rate filter, ffr, the effective integration time can be
calculated by comparing the variance statistic before and after
filtering:

t t
df

f df
, (9)

f

f
int,after int,before

2

2
fr
2

ò
ò

s

s
=

where tint,before is the integration time before filtering, σf denotes
the noise variance in fringe rate space and the integral is taken
over all possible fringe rates for a given baseline and
frequency. As discussed in Parsons et al. (2015), the signal
re-weighting associated with this fringe-rate filter can be
interpreted as a modification to the shape of the primary beam.

For the fiducial baseline at 151MHz, the integration time, as
given in Equation (9), associated with an optimal fringe rate
filter is 3430 s. The number of statistically independent samples
on the sky decreases from 83 to 1 sample per hour. As
discussed in Section 5.3, empirically estimating a covariance
matrix with a small number of independent samples can lead to
signal loss in the OQE. In order to counteract the signal loss,
we degrade the optimal fringe-rate filter, as shown in Figure 9,
to have an effective integration time of 1886 s, increasing the
number of independent modes to 2 per hour. The fringe rate
filter is now sub-optimal, but is still an improvement on the
boxcar weighting as used in P14. As documented in Table 1,
the correction factor for the associated signal loss of the filter
we have chosen is 1.39.

We implement the modified filter on a per baseline basis by
weighting the fringe-rate bins on the sky by the rms of the
beam at that same location. In order to obtain a smooth filter in
the fringe-rate domain, we fit a Gaussian with a hyperbolic
tangent tail to this filter. In addition, we multiply this response

with another hyperbolic tangent function that effectively zeros
out fringe rates below 0.2 mHz. This removes the slowly
varying signals that we model as crosstalk. We convolve the
time-domain visibilities with the Fourier transform of the
resulting fringe-rate filter, shown in Figure 9, to produce an
averaged visibility. The effect on the data can be seen in
Figure 8.

4. INSTRUMENTAL PERFORMANCE

4.1. Instrument Stability

In order to build sensitivity to the 21 cm reionization signal,
it is critical that PAPER be able to integrate coherently
measurements made with different baselines on different days.
Figure 10 shows the visibility repeatability between baselines
and nights as a function of LST. Specifically, we histogram the
real part of the visibilities for all redundant fiducial baselines in
a given LST bin for foreground contained data. We see that for
a given LST bin, the spread in values over all the baselines is
∼50 Jy which corresponds with our observed Tsys ∼ 500 K. We
get more samples per LST bin in the range of 2–10 hr due to
our observing season, therefore the density of points in this
LST region is greater, as shown by the color scale. This density
plot shows that redundant baselines agree very well with one
another; OMNICAL has leveled the antenna gains to within the
noise.
Delving in a little deeper, we also examine the stability in

time for measurements in a particular LST bin. In order to
quantify the stability in time we extract one channel for a given
baseline for every observation day and LST bin. We then
Fourier transform along the time direction for every LST bin
and compute the power spectrum. As shown in Figure 11, for
timescales greater than one day, we see that signal variance
drops by almost four orders of magnitude, with the exception of
an excess on two-day timescales caused by the changing
alignment of the 42.9 s integration timescale relative to a
sidereal day. The implication of this measurement is that, after
calibration, PAPER measurements are sufficiently stable to be
integrated coherently over the entire length of a 135 day
observation. This implies day-to-day stability of better than
1%, contributing negligibly to the uncertainties in the data.

4.2. System Temperature

During the LST binning step, the variance of the visibilities
that are averaged together for a given frequency and LST bin
are recorded. Using these variances, we calculate the system
temperature as a function of LST, averaging over each LST
hour.

T T t2 , (10)rms sys n= D

Figure 9. Optimal fringe-rate filter (orange) that and the degraded fringe-rate
filter (blue) actually used in the analysis at 151 MHz, normalized to peak at
unity.

Table 1
Signal Loss vs. Analysis Stage

Analysis Stage Typical Loss Maximum Loss

Bandpass Calibration <2 × 10−7% 3.0%
Delay Filtering 1.5 × 10−3% 4.8%
Fringe-rate Filtering 28.1% 28.1%
Quadratic Estimator <2.0% 89.0%
Median of Modes 30.7% 30.7%
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where Δν is the bandwidth, t is the integration time, and Trms is
the rms temperature, or the variance statistic described above.
Figure 12 shows the results of this calculation. In this observing
season, the system temperature drops just below previous
estimates as in P14 and Jacobs et al. (2015) of T 560 Ksys = , at
T 500 Ksys = at 160MHz. However, this estimate is more
consistent with the results derived in (Moore et al. 2015),
where T 505 Ksys = at 164MHz. The change in the system
temperature can be attributed to the reduced range of LST used
in the calculation. We note that at 7:00 LST, there is an
increase in the system temperature due to the rising of the
galactic plane as seen in Figure 3.

When calculating the system temperature using the
variance in the visibilities for a given LST and frequency,
we take into account the fact that we flag 3σ outliers from the
median. To calculate an effective correction factor to account
for the filtering, we assume the visibilities follow a Gaussian
distribution which would require a correction factor of 1.34
for the removal of data points that are 3σ above the median.
In other words, we are accounting for the wings of the

Gaussian that would contribute to the variance in the
visibility.
Previous estimates of the system temperature (P14; Jacobs

et al. 2015) relied on differencing and averaging baselines, time
samples, and/or frequency channels. The relative agreement
between these various methods of estimating the system
temperature provides a robust measure of the system
temperature of the PAPER instrument. Agreement between
the instantaneous measurements of the system temperature, the
LST repetition variance, and the predicted power spectrum
noise level (see below) indicates a robustly stable system with
no significant long term instability contributing appreciable
noise.

5. POWER SPECTRUM ANALYSIS

In this section we first review the OQE formalism, followed
by a walk-through of our particular applications of the OQE
method to our data. Finally, we discuss the effects of using an
empirically estimated covariance matrix in our analysis.

5.1. Review of OQEs

We use the OQE method to estimate our power spectrum as
done in Liu & Tegmark (2011), Dillon et al. (2013), Liu et al.
(2014a), Liu et al. (2014b), and Trott et al. (2012). Here we
briefly review the OQE formalism with an emphasis on our
application to data, which draws strongly from the aforemen-
tioned works, but also relies on empirical techniques similar to

Figure 10. Histogram of the real component of all calibrated visibilities measured over 135 days with every redundant instance of the fiducial baseline at 150 MHz.
Color scale indicates the number of samples falling in an LST/flux-density bin. This plot serves to illustrate the stability of the PAPER instrument and the precision of
calibration. The temporal stability of a single LST bin over multiple days is shown in Figure 11.

Figure 11. Power spectrum of 135 days of time-series data contributing to a
single LST bin, illustrating the stability of measurements over the observing
campaign. Relative to the average value, variation in the measured value across
days (quantified by variance as a function of time period) is orders of
magnitude lower. The excess at two-day timescales is a beat frequency
associated with the changing alignment of integration windows in the correlator
with respect to sidereal time.

Figure 12. System temperature, inferred from the variance of samples falling in
an LST bin, averaged over one-hour intervals in LST. The measured value in
the 150–160 MHz range is consistent with previous determinations of system
temperature (Jacobs et al. 2015; P14).
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those used in P14. The end goal of this analysis is to estimate
the 21 cm power spectrum, kP ( )21 , defined such that

( ) ( )k k k k kT T P( ) (2 ) ( ), (11)b b
* 3 D

21p dá ¢ ñ = - ¢ 

where kT ( )b is the spatial Fourier transform of the brightness
temperature distribution on the sky, áñ denotes an ensemble
average, and δD is the Dirac delta function.

In order to make an estimate of the power spectrum in the
OQE formalism, one begins with a data vector x. This vector
could, for example, consist of a list of brightness temperatures
on the sky for an imaging-based data analysis, or (in our case)
a list of measured visibilities. We form the intermediate
quantity,

x C Q C xq bˆ
1

2
, (12)† 1 1= -a a a

- -

which will be needed to form the OQE of our power spectrum.
Here, C xx†º á ñ is the true covariance matrix of the data vector
x, Qa is the operator that takes visibilities into power spectrum
k-space and bins into the αth bin, and bα is the bias to the
estimate that needs to be subtracted off. In general, Qa
represents a family of matrices, one for each k bin indexed by
α. Each matrix is defined as Q C

p
ºa

¶
¶ a

, i.e., the derivative of the

covariance matrix with respect to the band power pα. The
bandpower pa can be intuitively thought of as the value of the
power spectrum in the αth k bin. Therefore, Qa encodes the
response of the data covariance matrix to the αth bin of the
power spectrum.

The bias term bα in Equation (12) will include contributions
from both instrumental noise and residual foregrounds. Their
presence in the data is simply due to the fact that both
contributions have positive power. One approach to dealing
with these biases is to model them and to subtract them off, as
is suggested by Equation (12). An alternate approach is to
compute a cross-power spectrum between two data sets that are
known to have the same sky signal but independent
instrumental noise realizations. Labeling these two data sets as
x1 and x2 and computing

x C Q C xq̂
1

2
, (13)1

† 1 1
2=a a

- -

one arrives at a cross-power spectrum that by construction has
no noise bias. There is thus no need to explicitly model and
subtract any noise bias, although any residual foreground bias
will remain, since it is a contribution that is sourced by signals
on the sky, and therefore must exist in all our data sets.

The set of q̂ sa do not yet constitute a properly normalized
estimate of the power spectrum (as evidenced, for example, by
the extra factors of C 1- ). To normalize our results, we group
the unnormalized bandpowers into a vector q̂ and apply a
matrix M (whose exact form we specify later), so that

p Mqˆ ˆ (14)=

is a normalized estimate p̂ of the true power spectrum p. We
emphasize that the vector space that contains q̂ and p̂ is an
“output” vector space over different k-bins, which is separate
from the “input” vector space of the measurements, in which x
and C reside.

To select an M matrix that properly normalizes the power
spectrum, we must compute the window function matrix W for
our estimator. The window matrix is defined such that the true
bandpowers p and our estimates p̂ of them are related by

p Wpˆ , (15)=

so that each row gives the linear combination of the true power
that is probed by our estimate. With a little algebra, one can
show that

W MF, (16)=

where

( )F C Q C Q
1

2
tr , (17)1 1=ab a b

- -

which we have suggestively denoted with the symbol F to
highlight the fact that this turns out to be the Fisher information
matrix of the bandpowers. In order to interpret each bandpower
as the weighted average of the true bandpowers, we require
each row of the window function matrix to sum to unity. As
long as M is chosen in such a way that W satisfies this
criterion, the resulting bandpower estimates p̂ will be properly
normalized.
Beyond the normalization criterion, a data analyst has some

freedom over the precise form of M , which effectively also re-
bins the bandpower estimates. One popular choice is M F 1= - ,
which implies that W I= . Each window function is then a
delta function, such that bandpowers do not contain leakage
from other bins, and contain power from only that bin.
However, the disadvantage of this becomes apparent if one also
computes the error bars on the bandpower estimates. The error
bars are obtained by taking the square root of the diagonal of
the covariance matrix, which is defined as

( )p pp p pCov ˆ ˆ ˆ ˆ ˆ . (18)† †S = = á ñ - á ñá ñ

Since p Mqˆ ˆ= , it is easily shown that

MFM . (19)†S =

The choice of M F 1= - tends to give rather large error bars. At
the other extreme, picking M Fdµab ab aa (with the propor-
tionality constant fixed by our normalization criterion) leads to
the smallest possible error bars (Tegmark 1997), at the expense
of broader window functions. In our application of OQEs in the
following sections, we will pick an intermediate choice for M ,
one that is carefully tailored to avoid the leakage of foreground
power from low k modes to high k modes.

5.2. Application of OQE

Here we describe the specifics of our application of the OQE
formalism to measure the power spectrum. Doing so requires
defining various quantities such as x, C, Qa for our analysis
pipeline.
First, we consider x, which represents the data in our

experiment. Our data set consists of visibilities as a function of
frequency and time for each baseline in the array. In our
analysis, we group the baselines into three groups of redundant
baselines (described in Section 2), in the sense that within each
group there are multiple copies of the same baseline. In the
description that follows, we first estimate the power spectrum
separately for each group. Power spectrum estimates obtained
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from the different redundant groups are then combined in a set
of averaging and bootstrapping steps described in Section 5.4.
Note that because our data have been fringe-rate filtered in the
manner described in Section 3.5, we may reap all the benefits
of coherently integrating in time simply by estimating the
power spectrum for every instant in the LST-binned data before
averaging over the time-steps within the LST-binned day
(Parsons et al. 2015).

For the next portion of our discussion, consider only the data
within a single redundant group. Within each group there are
not only multiple identical copies of the same baseline, but in
addition (as discussed in Section 3.3), our pipeline also
constructs two LST-binned data sets, one from binning all
even-numbered days in our observations, and the other from all
odd-numbered days. Thus, we have not a single data vector, but
a whole family of them, indexed by baseline (i) and odd versus
even days (r). Separating the data out into independent
subgroups allows one to estimate cross-power spectra rather
than auto-power spectra in order to avoid the noise bias, as
discussed in the previous section. The data vectors take the
form

x t
V t

V t( )
( , )

( , ) , (20)ri

ri

ri

1

2

n

n=

æ

è

çççççççç

ö

ø
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where V t( , )ri n is the visibility at frequency ν at time t. Each
data vector is 20 elements long, being comprised of 20
channels of a visibility spectrum spanning 10MHz of
bandwidth centered on 151.5 MHz.

Having formed the data vectors, the next step in Equa-
tion (12) is to weight the data by their inverse covariance. To
do so, we of course require the covariance matrix C, which by
definition, is the ensemble average of xx†, namely C xx†= á ñ.
Unfortunately, in our case the covariance is difficult to model
from first principles, and we must resort to an empirically
estimated C. We make this estimation by taking the time
average of the quantity xx† over 8.5 hr of LST, estimating a
different covariance matrix for each baseline and for odd versus
even days. While an empirical determination of the covariance
is advantageous in that it captures features that are difficult to
model from first principles, it carries the risk of cosmological
signal loss (Switzer & Liu 2014). We will discuss and quantify
this signal loss in Section 5.3.

To gain some intuition for the action of C 1- on our data, let
us examine the combination

( )z C x (21)ri ri ri1
=

-

for select baselines. This is a crucial step in the analysis since it
suppresses coherent frequency structures (such as those that
might arise from residual foregrounds). Note that the inverse
covariance weighting employed here differs from that in P14,
in that P14 modeled and included covariances between
different baselines, whereas in our current treatment we only
consider covariances between different frequency channels.
Figure 13 compares the effects of applying the inverse
covariance matrix to a data vector that contains foregrounds
(and thus contains highly correlated frequency structures) to
one in which foregrounds have been suppressed by the
wideband delay filter described in Section 3.3. In the figure,

the top row corresponds to the data vector xri for three selected
baselines in the form of a waterfall plot of visibilities, with
frequency on the horizontal axis and time on the vertical axis.
The middle section shows the empirical estimate of the
covariance by taking the outer product of x with itself and
averaging over the time axis. Finally, the last row shows the
results of inverse covariance weighting the data, namely zri. In
every row, the foreground-dominated data are shown in the left
half of the figure, while the foreground-suppressed data are
shown in the right half.
Consider the foreground-dominated xri in Figure 13, and

their corresponding covariance matrices. The strongest modes
that are present in the data are the eigenmodes of the covariance
matrix with the largest eigenvalues. Figure 14 shows the full
eigenvalue spectrum and the four strongest eigenmodes. For
the foreground-dominated data, one sees that the eigenvalue
spectrum is dominated by the first few modes, and the
corresponding eigenmodes are rather smooth, highly sugges-
tive of smooth spectrum foreground sources. The application of
the inverse covariance weighting down-weights these eigen-
modes, revealing waterfall plots in the bottom row of Figure 13
that look more noise-dominated. With the foreground-
suppressed portion (right half) of Figure 13, the initial xri

vectors already appear noise dominated (which is corroborated
by the relatively noisy form of the eigenvalue spectra in
Figure 14). The final zri vectors remain noise-like, although
some smooth structure (perhaps from residual foregrounds) has
still been removed, and finer scale noise has been up-weighted.
With intuition established for the behavior of C 1- , we may

group our identical baselines into five different sets and average
together zri vectors for baselines within the same set. That is,
we form

( )z C x , (22)A
r

i A

ri ri1
å=
Î

-

where A ranges from 1 to 5 and indexes the baseline set. At this
point, we have 10 weighted data vectors z (5 baseline sets, each
of which has an even day and odd day version) for every LST-
binned time-step. As discussed in the previous section,
instrumental noise bias may be avoided by forming cross-
power spectra rather than auto-power spectra. Generalizing
Equation (13) to our present case where we have 10 different
data vectors, we have

q z Q zˆ , (23)
A B r s

r s A B

A
r

B
s

, , ,
,

†å=a a

¹ ¹

so that auto-power contributions from identical baseline groups
or identical even/odd indices never appear. Residual fore-
ground bias will remain in Equation (23), but in order to avoid
possible signal loss from an overly aggressive foreground bias
removal scheme, we conservatively allow the foreground bias
to remain. Since foreground power will necessarily be positive,
residual foregrounds will only serve to raise our final upper
limits.
In order to implement Equation (23), it is necessary to derive

a form for Q C pº ¶ ¶a a. To do so, we follow the delay
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spectrum technique of P12a, where it was shown that

( )kP
k
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where V t( , )i t is the delay transform of baseline visibilities
given by Equation (8), X and Y are the constants that convert
from angles and frequency to the co-moving coordinate,
respectively, Ω is the power squared beam (see Appendix B
of P14), B is the bandwidth, λ is the spectral wavelength, and
kB is Boltzmann’s constant. This suggests that in order to
estimate the power spectrum from visibilities, one only needs
to Fourier transform along the frequency axis (converting the
spectrum into a delay spectrum) before squaring and multi-
plying by a scalar. Thus, the role of Qa in Equation (23) is to
perform a frequency Fourier transform on each copy of z. It is
therefore a separable matrix of the form Q m m †=a a a, where
ma is a complex sinusoid of a specific frequency corresponding
to delay mode α. We may thus write

q z m m zˆ . (25)
A B r s

r s A B

A
r

B
s

, , ,
,

† †å=a a a
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Figure 13. Visibilities before (top row) and after (bottom row) inverse covariance weighting. Signal covariance (middle row) is estimated empirically, averaging over
LST. The three left/right columns show visibilities from three different baselines in a redundant group before/after delay filtering, respectively.

Figure 14. Eigenvalue spectrum of covariance matrices (left) empirically
estimated from visibilities before (blue) and after (green) delay filtering. The
four strongest eigenmodes of the filtered/unfiltered data are plotted on the top/
bottom panels on the right, respectively.
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With an explicit form for Qa, one now also has the necessary
ingredients to compute the Fisher matrix using Equation (17).

Having computed the q̂ sa , we group our results into a vector
q̂. This vector of unnormalized bandpowers is then normalized
to form our final estimates of the power spectrum p. As noted
above, the normalization occurs by the M matrix in
Equation (14), and can be any matrix of our desire. Even
though the choices of the normalization matrices described
above have certain good properties, e.g., small error bars or no
leakage, we opt for a different choice of window function, as
follows. We first reorder the elements in q̂ (and therefore in F,
M , and p̂ for consistency) so that the k-modes are listed in
ascending order, from low k to high k, with the exception that
we place the highest k bin third after the lowest two k bins.
(The reason for this exception will be made apparent shortly).
We then take the Cholesky decomposition of the Fisher matrix,
such that F LL†= , where L is a lower triangular matrix.
Following that, we pick M DL 1= - , where D is a diagonal
matrix chosen to adhere to the normalization constraint that
W MF= has rows that sum to unity. In this case, the window
function matrix becomes, W DL†= . This means that W is
upper triangular, and with our ordering scheme, has the
consequence of allowing power to leak from high to low k, but
not vice versa. Since our k axis is (to a good approximation)
proportional to the delay axis, foregrounds preferentially
appear at low k because their spectra are smooth. Reducing
leakage from low k to high k thus mitigates leakage of
foregrounds into the cleaner, more noise-dominated regions.
Additionally, our placement of the highest k bin as the third
element in our reordering of p̂ prevents leakage from this edge
bin that will contain aliased power. Figure 15 shows the
resulting window functions.

Our choice of normalization matrix also has the attractive
property of eliminating error correlations between bandpower
estimates. Using Equation (19), we have that

DL LL L D D . (26)1 † † 2S = =- -

The error covariance matrix on the bandpowers is thus
diagonal, which implies that our final data points are
uncorrelated with one another. This stands in contrast to the
power-spectrum estimator used in P14, where the Blackmann–
Harris taper function induced correlated errors between
neighboring data points.

5.3. Covariance Matrix and Signal Loss

We now discuss some of the subtleties associated with
empirically estimating the covariance matrix from the data.
Again, the covariance matrix is defined as the ensemble
average of the outer product of a vector with itself, i.e.,

C xx , (27)†= á ñ

where x is the data (column) vector used in the analysis. In our
analysis, we do not have a priori knowledge of the covariance
matrix. and thus we must resort to empirical estimates (Dillon
et al. 2015). As we have alluded to above, we replace the
ensemble average with a time average that runs from 0 to 8:30
LST hours.

Since the OQE method for power spectrum estimation
requires the inversion of C, it is crucial that our empirically
estimated covariance be a full rank matrix. With our data

consisting of visibilities over 20 frequency channels, the
covariance matrix is a 20 × 20 matrix. Thus, a necessary
condition for our estimate to be full rank is for there to be at
least 20 independent time samples in our average. As noted in
Section 3.5 the fringe-rate filter used corresponds to averaging
time samples for 31 minutes. Over the LST range used in this
analysis, this corresponds to roughly 20 statistically indepen-
dent modes in our data after fringe-rate filtering. We therefore
have just enough samples for our empirical estimate, and in
practice, our covariance matrices are invertible and allow OQE
techniques to be implemented.
Another potential problem that occurs from empirically

estimating covariances is that it leads to models of the
covariance matrix that over-fit the noise. In this scenario, the
covariance matrix tells us that there may be modes in the data
that should be down-weighted, for example, but if the empirical
covariance estimates are dominated by noise, these may just be
random fluctuations that need not be down-weighted. Said
differently, the weighting of the data by the inverse covariance
is heavily influenced by the noise in the estimate of the
covariance matrix and thus has the ability to down-weight valid
high-variance samples. Over-fitting the noise in this manner
carries with it the possibility of cosmological signal loss. This
seems to contradict the conventionally recognized feature of
OQEs as lossless estimators of the power spectrum (Tegmark
1997). However, the standard proofs of this property assume
that statistics such as C are known a priori, which is an
assumption that we are violating with our empirical estimates.
In order to deal with possible signal loss, we perform

simulations of our analysis pipeline, deriving correction factors
that must be applied to our final constraints. We simulate

Figure 15. Window function matrix W , as defined in Equation (15). The ith
row corresponds to the window function used in the estimate of the power
spectrum for the ith k-mode. Color scale indicates Wlog10 . The inset plot
illustrates the window function along the dashed line in the upper panel. As
described in Section 5.2, M in Equation (16) has been chosen so that each
window function peaks at the waveband while achieving a high degree of
isolation from at lower k-modes that are likely to be biased by foregrounds.
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visibilities for Gaussian temperature field with a flat amplitude
in P(k) that rotates with the sky, which is fringe-rate filtered in
the same way as the data for our fiducial baselines. This signal
is processed through our pipeline, and the output power
spectrum compared to the input power spectrum, for various
levels of input signal amplitude. We repeat this for 40 sky
realizations at each signal level. Figure 16 shows the resultant
signal loss associated with estimating the covariance matrix
from the data. Error bars were obtained through bootstrapping.

As a function of the increasing input amplitude of the
simulated power spectra, we find that the ratio of output power
to input power decreases, which we interpret as signal loss
through the use of our empirical OQE of the power spectrum.
However, since the transfer function through this analysis is an
invertible function, we can correct for the transfer by using the
output value to infer a signal loss that is then divided out to
obtain the original input signal level. In Figure 16, we see that
deviations from unity signal transfer begin at power spectrum
amplitudes of h10 mK ( Mpc)7 2 1 3- . For the range of output
power spectrum amplitudes in our final estimate of the 21 cm
power spectrum (Figure 18), we show that signal loss is <2% at
95% confidence.

As shown in Table 1, the signal loss we characterize for
quadratic estimation of the power spectrum band powers is
tabulated along with the signal loss associated with each other
potentially lossy analysis stage (see Figure 2). We correct for
the signal loss in each stage by multiplying the final power
spectrum results by the typical loss for each stage, except for
modes within the horizon limit and immediately adjacent to the

horizon limit, where we apply the maximum signal loss
correction to be conservative.

5.4. Bootstrapped Averaging and Errors

When estimating our power spectra via OQEs, we generate
multiple samples of the power spectrum in order to apply the
bootstrap method to calculate our error bars. In detail, the
power spectrum estimation scheme proposed above requires
averaging at several points in the pipeline.

1. Visibilities are averaged into five baseline groups after
inverse covariance weighting (see Equation (22)).

2. Power spectrum estimates from each of the three
redundant baseline types (described in Section 2) are
averaged together.

3. Power spectrum estimates from each LST are averaged
together.

With the bootstrapping technique, we do not directly
perform these averages. Instead, one draws random samples
within the three-dimensional parameter space specified above,
with replacement, until one has as many random samples as
there are total number of parameter space points. These random
samples are then propagated through the power spectrum
pipeline and averaged together as though they were the original
data. This forms a single estimate (a “bootstrap”) of kP ( ).
Repeating random draws allows one to quantify the inherent
scatter—and hence the error bars—in our estimate of kP ( ).
When plotting k k P k( ) ( ) 22 3 2pD º instead of kP ( ), we bin
power falling in +k and −k, and so we additionally randomize
the inclusion of positive and negative k bins.
We compute a total of 400 bootstraps. In combining

independent samples for our final power spectrum estimate,
we elect to use the median, rather than the mean, of the
samples. One can see the behavior of both statistics in
Figure 17, where we show how the absolute value of Δ2(k)
integrates down as more independent samples are included in
the mean and median. In this plot, one can see modes
integrating down consistent with a noise-dominated power
spectrum until they bottom out on a signal. In the noise-
dominated regime, the mean and the median behave similarly.
However, we see that the median routinely continues to
integrate down as noise for longer. This is an indication that the
mean is skewed by outlier modes, suggesting variations beyond
thermal noise. The magnitude of the difference is also not
consistent with the Rayleigh distribution expected of a
cosmological power spectrum limited by cosmic variance.
For a Rayleigh distribution, the median is ln 2 0.69~ times the
mean. Instead, we interpret the discrepancy as a sign of
contributions from foregrounds, which are neither isotropic nor
Gaussian distributed. Since median provides better rejection of
outliers in the distribution that might arise from residual
foreground power, we choose to use the median statistic to
combine measurements across multiple modes. As listed in
Table 1, we apply a 1 ln 2 correction factor to our power
spectrum estimates to infer the mean from the median of a
Rayleigh distribution.

6. RESULTS

6.1. Power Spectrum Constraints

To summarize the previous section, we follow the power
spectrum analysis procedure outlined in Section 5.2, we

Figure 16. Recovered power spectrum signal as a function of injected signal
amplitude. Shaded regions indicate the range in measured amplitude of power
spectrum modes in Figure 18. Error bars indicate 95% confidence intervals as
determined from the Monte Carlo simulations described in Section 5.3.
Because the recovered signal amplitude is a monotonic function of the injected
signal amplitude, it is possible to invert the effects of signal loss in the
measured power spectrum values to infer the true signal amplitude on the sky.
Over the range of powers measured, the maximum correction factor P Pin out is
less than 1.02 at 97.5% confidence. The transition to significantly higher
correction factors at larger signal amplitudes occurs as the injected signal
dominates over the foreground modes present in estimates of the data
covariance.
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incoherently combine independent power spectrum measure-
ments made at different times and with different baseline
groups using the median statistic. As described in Section 5.4,

we bootstrap over all of these independent measurements, as
well as over the selection of baselines included in the power
spectrum analysis for each baseline group, in order to estimate

Figure 17. Absolute value of the cumulative mean (left) and median (right), as a function of number of modes of the power spectrum band power for k modes

ranging from −0.49 (red) to h0.44 Mpc 1- (violet). Here, modes are defined as samples from different redundant baseline groups and LSTs. This Allen variance plot
shows modes averaging down as the square root of number of modes combined until a signal floor is reached. The difference in behavior between the mean and
median is an indication of outliers in the distribution of values, likely as a result of foreground contamination. We use the median in the estimation of the power
spectrum in Figure 18, along with a correction factor compensating for the difference between the mean and median in estimating variance.

Figure 18. Measured power spectrum (black dots with 2σ error bars) at z = 8.4 resulting from a 135 day observation with PAPER-64. The dashed vertical lines at
h0.6 Mpc 1- show the bounds of the delay filter described in Section 3.3. The predicted 2σ upper limit in the absence of the a celestial signal is shown in dashed cyan,

assuming T K500sys = . The triangles indicate 2 σ upper limits from GMRT (Paciga et al. 2011) (yellow) at z = 8.6, MWA (Dillon et al. 2014) at z = 9.5 (magenta),
and the previous PAPER upper limit (P14) at z = 7.7 (green). The magenta curve shows a predicted model 21 cm power spectrum at 50% ionization (Lidz
et al. 2008).
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the error bars on the spherically averaged power spectrum P(k),
where positive and negative k measurements are kept separate
for diagnostic purposes. In the estimation of the dimensionless
power spectrum k k P k( ) ( ) 22 3 2pD º , the folding of k  is
handled along with the rest of the bootstrapping over
independent modes. Finally, the measured values for P(k)
and Δ2(k) are corrected for signal loss through all stages of
analysis, as summarized in Table 1.

The final results are plotted in Figure 18. For the first two
modes outside of the horizon where Δ2(k) is measured, we
have clear detections. We attribute these to foreground leakage
from inside the horizon related to the convolution kernels in
Equation (8) (either from the chromaticity of the antenna
response, or from the inherent spectrum of the foregrounds
themselves). Somewhat more difficult to interpret are the 2.4σ
excess at k h0.30 Mpc 1» - and the 2.9σ excess at
k h0.44 Mpc 1» - . Having two such outliers is unlikely to be
chance.

In examining the effects on the power spectrum of omitting
various stages of analysis (see Figure 19), we see a pronounced
excess in the green curve corresponding to the omission of
crosstalk removal in fringe-rate filtering. While the signal is
heavily attenuated in the filtering step, it remains a possibility
that the remaining detections are associated with instrumental
crosstalk. We do note, however, that the qualitative shape of
the excess in the crosstalk-removed data does not appear to
match that of the crosstalk-containing data.

Another likely possibility is that the signal might be
associated with foregrounds. Foregrounds, which are not
generally isotropically distributed on the sky, are likely to be
affected by the spatial filtering associated with fringe-rate

filtering, whereas a statistically isotropic signal is not. Indeed,
we see that excesses in many modes measured using the P14
stype time-domain filtering (blue in Figure 19) decrease
significantly using the improved fringe-rate filter. As discussed
in Parsons et al. (2015), the normalization applied to Ωeff for
fringe-rate filtering correctly compensates for the effect of this
filtering on power-spectral measurements of a statistically
isotropic Gaussian sky signal. We can surmise from any
significant change in amplitude of the excess under fringe-rate
filtering that it arises from emission that violates these
assumptions. We conclude, therefore, that this excess is
unlikely to be cosmic reionization, and is more likely the
result of non-Gaussian foregrounds. As discussed earlier, one
possible culprit is polarization leakage (Jelić et al. 2010, 2014;
Moore et al. 2013), although further work will be necessary to
confirm this. The interpretation of the signal as polarization
leakage is, however, rather high to be consistent with recent
measurements in Stokes Q presented in Moore et al. (2015),
where the leakage is constrained to be <100 mK2 for all k.
That the excesses at k ≈ 0.30 and h0.44 Mpc 1- are relatively

unaffected by the filtering could be an indication that they are
more isotropically distributed, but more likely, it may mean
that the simply arise closer to the center of the primary beam
where they are down-weighted less. Both excesses appear to be
significantly affected by omitting OMNICAL calibration
(orange in Figure 19). This could be interpreted as indicating
the excess is a modulation induced by frequency structure in
the calibration solution. However, OMNICAL is constrained to
prohibit structure common to all baselines, so a more likely
interpretation is that this faint feature decorrelates without the

Figure 19. Diagnostic power spectra in the style of Figure 18 illustrating the impact of various analysis stages. The blue power spectrum uses the P14 fringe-rate filter
combined with crosstalk removal. Green illustrates the result using the improved fringe-rate filter, but without crosstalk removal. A power spectrum derived without
the application of OMNICAL is shown in orange. Black includes improved fringe-rate filtering, crosstalk removal, and OMNICAL calibration; it is the same power
spectrum shown in Figure 18.
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precision of redundant calibration. To determine the nature of
these particular excesses, further work will be necessary.

In order to aggregate the information presented in the power
spectrum into a single upper limit, we fit a flat Δ2(k) model to
measurements in the range k h0.15 0.5 Mpc 1< < - . We use a
uniform prior of amplitudes between −5000 and 5000 mK2,
and assume measurement errors are Gaussian. Figure 20 shows
the posterior distribution of the fit. From this distribution, we
determine a mean of (18.9 mK)2 and a 2σ upper limit of
(22.4 mK)2. The measured mean is inconsistent with zero at the
4.7σ level, indicating that we are detecting a clear power
spectrum excess at k h0.15 Mpc 1> - .

We suspect that the excess in our measured power spectrum
is likely caused by crosstalk and foregrounds. We therefore
suggest ignoring the lower bound on the power spectrum
amplitude as not being of relevance for the cosmological
signal. On the other hand, since foreground power is
necessarily positive, the 2σ upper limit of (22.4 mK)2 at
z = 8.4, continues to serve as a conservative upper limit. This
significantly improves over the previous best upper limit of
(41 mK)2 at z = 7.7 reported in P14. As we show below and in
greater detail in Pober et al. (2015), this limit begins to have
implications for the heating of the IGM prior to the completion
of reionization.

6.2. Spin Temperature Constraints

In this section, we examine the implication of the measured
upper limits on 21 cm emission in Figure 18 on the spin
temperature of the 21 cm line at z = 8.4. In a forthcoming paper
(Pober et al. 2015), we conduct a thorough analysis of the
constraints that can be put on the IGM using a simulation-based
framework. As a complement to that more thorough analysis,
we focus here on a simpler parameterization of the shape of the
21 cm power spectrum signal.

The brightness temperature of the 21 cm signal, Tbd , arising
from the contrast between the cosmic microwave background,
T ,g and the spin temperature, T ,s is given by
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where temperatures are implicitly a function of redshift z, and
the approximation holds for low optical depth, τ. The optical
depth is given by (Zaldarriaga et al. 2004)
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where A10 is the Einstein A coefficient for the 21 cm transition,
nH I is the density of the neutral hydrogen, H(z) is the Hubble
constant, xH I is the neutral fraction of hydrogen, δ is the local
baryon overdensity, ν0 is the rest frequency of the 21 cm
transition, and the remainder are the usual constants. Plugging
in the cosmological parameters from Planck Collaboration et al.
(2015), we get

T T x (1 ) , (30)b 0 H Id d x» +

where T T1 sx º - g and T z26.7 mK (1 ) 100 º + .
If the spin temperature is larger than T ,g we get the 21 cm

signal in emission with respect to the CMB, and 1x ~ .
However, if Ts is less than T ,g δTb is negative and ξ can
potentially become large.
As in P14, we consider a “weak heating” scenario in which

Ts is coupled to the gas temperature via the Wouthuysen-Field
effect (Wouthuysen 1952; Field 1958; Hirata 2006), but little
heating has taken place prior to reionization, so that T Ts < g . In
this scenario, because we have assumed little heating, we can
approximate ξ as having negligible spatial dependence, and
therefore T0

2 2x becomes a simple multiplicative scalar to the
21 cm power spectrum:

k T z k( ) ( ) ( ), (31)i21
2

0
2 2 2xD = D

where k( )i
2D is the dimensionless H I power spectrum.

As shown in P14, the maximum value of the prefactor in
Equation (31) is given by a no-heating scenario where the spin
temperature follows the kinetic gas temperature, which is held
in equilibrium with the CMB via Compton scattering until zdec
≈ 150 (Furlanetto et al. 2006) and then cools adiabatically as

z(1 )2+ . In this case, ξ is given by
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At z = 8.4, this corresponds to a minimum bound on the spin
temperature of T 1.5 Ks > .
We can now flip this argument around and, for a measured

upper bound on k( )21
2D , we can use models for k( )i

2D in
Equation (31) to place a bound on Ts. We consider a class of
“patchy” reionization models (P12a; P14) which approximates
the ionization power spectrum as flat between minimum and
maximum bubble sizes, kmin and k ,max respectively:

( ) ( )k x x k k( ) ln . (33)i
2

H H
2

max minI ID = -

For combinations of kmin and k ,max we determine the minimum
spin temperature implied by the 2σ 21 cm power spectrum
upper limits shown in Figure 18. Figure 21 shows the results of

Figure 20. Posterior distribution of power spectrum amplitude for a flat Δ2(k)
power spectrum over k h0.15 0.5 Mpc 1< < - (solid black), assuming
Gaussian error bars. The blue and orange vertical lines correspond to the 1σ
and 2σ bounds, respectively.
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these bounds for neutral fractions of xH I = 0.1, 0.3, 0.5, 0.7,
and 0.9. In almost all cases (excepting xH I = 0.1, 0.9 for
k h0.1 Mpcmin

1< - ), we find that T 3 Ks  , indicating that our
measurements are inconsistent with the spin temperature being
coupled to a kinetic temperature governed strictly by adiabatic
expansion.

Our results become more interesting in the range of
k 0.1min ~ and k 30max ~ representative of fiducial simulations
(Zahn et al. 2007; Lidz et al. 2008). For neutral fractions of 0.3,
0.5, and 0.7, we find that T 4 Ks  . Pober et al. (2015)
improves on these results by using a simulation-based frame-
work, rather than relying on coarse parametrizations of the
power spectrum shape. They compare the limits they find to the
amount of heating possible given the currently observed star
formation rates in high-redshift galaxy populations (Bouwens
et al. 2014; McLeod et al. 2015) and assumptions about the
relationship between star formation rates and X-ray luminos-
ities (Furlanetto et al. 2006; Pritchard & Loeb 2008; Fialkov
et al. 2014). Assuming the midpoint of reionization lies close to
z = 8.4 (a reasonable assumption given that Planck
Collaboration et al. 2015 suggests a midpoint of z = 8.8),
both the bounds found in this paper and Pober et al. (2015)
show evidence for heating that places constraints on the
possible values for the star formation rate/X-ray luminosity
correlation given certain models of the star formation rate
density redshift evolution. We refer the reader to Pober et al.
(2015) for a detailed examination of these results.

7. DISCUSSION

The improvement in our results over those in P14 are the
result of four major advances:

1. the expansion of PAPER to 64 antennas doubled our
instrument’s power spectrum sensitivity,

2. using OMNICAL for redundant calibration significantly
improved the clustering of measurements over the
previous implementation of LOGCAL used in P14,

3. fringe-rate filtering further improved power spectrum
sensitivity by ∼50% and suppressed systematics asso-
ciated with foregrounds low in the primary beam, and

4. moving from a lossless quadratic estimator targeting
difference modes in redundant measurements to an OQE

(with carefully calibrated signal loss) significantly
reduced contamination from residual foregrounds.

Figure 19 illustrates the effect of some of these advances on
the final power spectrum. Other important advances include the
use of the median statistic to reduce the impact of non-Gaussian
outliers in power-spectral measurements, and the use of a
Cholesky decomposition of the Fisher information matrix to
help reduce leakage from highly contaminated modes within
the wedge.
These new techniques and improvements to calibration have

reduced the measured bias in nearly all wavebands by an order
of magnitude or more. The use of OMNICAL to accurately
calibrate the relative complex gains of the antennas has shown
to be a major improvement to the data-reduction pipeline. The
accuracy and improvement of this calibration brings redundant
baselines into impressive agreement with one another (see
Figures 4 and 10), and provides important diagnostic
information for monitoring the health of the array, flagging
RFI events, and otherwise assessing data quality. Fringe-rate
filtering, which is described in greater depth in Parsons
et al. (2015), is also proving to be a flexible and powerful
tool for controlling direction-dependent gains and improving
sensitivity.
As sensitivity improves, it will be possible to determine

more accurately than Moore et al. (2015) what the actual level
of polarized emission, and thus leakage, may be. Independent
fringe-rate filtering of the XX and YY polarizations prior to
summation has the potential to better match these polarization
beams and further suppress the leakage signal if the polarized
signal turns out to be significant.
The end result is a major step forward, both for PAPER and

for the field of 21 cm cosmology. While we have not yet made
a detection of the 21 cm cosmological signal, our limits are
now within the range of some of the brighter models. As
discussed in Pober et al. (2015), another order-of-magnitude
improvement in sensitivity will make 21 cm measurements
highly constraining.

8. CONCLUSIONS

We present new upper limits on the 21 cm reionization
power spectrum at z = 8.4, showing a factor of ∼4
improvement over the previous best result (P14). We find a

Figure 21. Constraints on the 21 cm spin temperature at z = 8.4, assuming the patchy reionization model in Equations (31) and (33), which hold in the limit that
T Ts CMB< .
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2σ upper limit of (22.4 mK)2 by fitting a flat power spectrum in
a k range from k h0.15 0.5 Mpc 1< < - to the dimensionless
power spectrum, Δ2(k), measured by the PAPER instrument.
We coarsely show that these upper limits imply a minimum
spin temperature for hydrogen in the IGM. Although these
limits are dependent on the model chosen for the power
spectrum, we use a patchy reionization model to show that
limits of Ts > 4 K are fairly generic for models with ionization
fractions between 0.3 and 0.7. A more detailed analysis of the
implied constraints on spin temperature using semi-analytic
reionization/heating simulations is presented in a forthcoming
paper (Pober et al. 2015).

The power spectrum results that we present continue to be
based on the delay-spectrum approach to foreground avoidance
presented in P12b and first applied in P14. The application of a
delay filter over a wide bandwidth continues to be one of the
most powerful techniques yet demonstrated for managing
bright smooth-spectrum foregrounds. In this paper, we extend
the analysis in P14 with improved fringe-rate filtering,
improved redundant calibration with OMNICAL, and with an
OQE that, while not perfectly lossless, is more adept at down-
weighting residual foregrounds. The combined effect of these
improvements leaves a power-spectral measurement that is not
consistent with zero at the 4.7σ-level, which we expect is a
result of contamination from crosstalk and foregrounds. With
the expansion of PAPER to 64 antennas, the extended 135 day
observing campaign, and the added sensitivity benefits of
fringe-rate filtering, combined with the optimization of antenna
positions in PAPER for highly redundant measurements, this
thermal noise limit is beginning to enter the realm of
constraining realistic models of reionization.

Forthcoming from PAPER will be two seasons of observa-
tion with a 128-element array. Following the same analysis as
presented here, that data set is expected to improve over the
PAPER-64 sensitivity by a factor of ∼4 (in mK2), with the
potential for another boost to sensitivity should the new 16 m
baselines provided in the PAPER-128 array configuration
prove to be usable. There also remains the potential for further
improvements to sensitivity through the use of longer base-
lines, if foregrounds can be managed effectively. As has been
done recently for PAPER-32 (Jacobs et al. 2015; Moore
et al. 2015), future work will also extend PAPER-64 analysis to
a range of redshifts and examine the power spectrum of
polarized emission.

With recent breakthroughs in foreground management, the
sensitivity limitations of current experiments are becoming
clear. Although collecting area is vital, as discussed in Pober
et al. (2014), the impact of collecting area depends critically on
the interplay of array configuration with foregrounds. Despite a
large spread in collecting areas between PAPER, the MWA,
and LOFAR, in the limit that foreground avoidance is the only
viable strategy, these arrays all deliver, at best, comparable
low-significance detections of fiducial models of reionization.
To move beyond simple detection, next-generation instruments
must deliver much more collecting area with very compact
arrays.

The HERA and the low frequency Square Kilometre Array
(SKA-Low) are next generation experiments that aim to make
significant detections of the 21 cm power spectrum and begin
characterizing it. SKA-Low has secured pre-construction
funding for a facility in western Australia. HERA was recently
granted funding for its first phase under the National Science

Foundation’s Mid-Scale Innovations Program. HERA uses a
close packing of 14 m diameter dishes designed to minimize
the width of the delay-space kernel Ãt in Equation (8).
Sensitivity forecasts for a 331-element HERA array and SKA-
Low show that they can deliver detections of the 21 cm
reionization signal at a significance of 39σ and 21σ,
respectively, using the same the conservative foreground
avoidance strategy employed in this paper (Pober
et al. 2014). HERA is the natural successor to PAPER,
combining a proven experimental strategy with the sensitivity
to deliver results that will be truly transformative for under-
standing of our cosmic dawn.
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