33 research outputs found

    Target Selection for the LBTI Exozodi Key Science Program

    Get PDF
    The Hunt for Observable Signatures of Terrestrial planetary Systems (HOSTS) on the Large Binocular Telescope Interferometer will survey nearby stars for faint emission arising from ~300 K dust (exozodiacal dust), and aims to determine the exozodiacal dust luminosity function. HOSTS results will enable planning for future space telescopes aimed at direct spectroscopy of habitable zone terrestrial planets, as well as greater understanding of the evolution of exozodiacal disks and planetary systems. We lay out here the considerations that lead to the final HOSTS target list. Our target selection strategy maximizes the ability of the survey to constrain the exozodi luminosity function by selecting a combination of stars selected for suitability as targets of future missions and as sensitive exozodi probes. With a survey of approximately 50 stars, we show that HOSTS can enable an understanding of the statistical distribution of warm dust around various types of stars and is robust to the effects of varying levels of survey sensitivity induced by weather conditions.Comment: accepted to ApJ

    The Science Case for the Planet Formation Imager (PFI)

    Full text link
    Among the most fascinating and hotly-debated areas in contemporary astrophysics are the means by which planetary systems are assembled from the large rotating disks of gas and dust which attend a stellar birth. Although important work has already been, and is still being done both in theory and observation, a full understanding of the physics of planet formation can only be achieved by opening observational windows able to directly witness the process in action. The key requirement is then to probe planet-forming systems at the natural spatial scales over which material is being assembled. By definition, this is the so-called Hill Sphere which delineates the region of influence of a gravitating body within its surrounding environment. The Planet Formation Imager project (PFI) has crystallized around this challenging goal: to deliver resolved images of Hill-Sphere-sized structures within candidate planet-hosting disks in the nearest star-forming regions. In this contribution we outline the primary science case of PFI. For this purpose, we briefly review our knowledge about the planet-formation process and discuss recent observational results that have been obtained on the class of transition disks. Spectro-photometric and multi-wavelength interferometric studies of these systems revealed the presence of extended gaps and complex density inhomogeneities that might be triggered by orbiting planets. We present detailed 3-D radiation-hydrodynamic simulations of disks with single and multiple embedded planets, from which we compute synthetic images at near-infrared, mid-infrared, far-infrared, and sub-millimeter wavelengths, enabling a direct comparison of the signatures that are detectable with PFI and complementary facilities such as ALMA. From these simulations, we derive some preliminary specifications that will guide the array design and technology roadmap of the facility.Comment: SPIE Astronomical Telescopes and Instrumentation conference, June 2014, Paper ID 9146-120, 13 pages, 3 Figure

    Exo-zodi Modeling for the Large Binocular Telescope Interferometer

    Get PDF
    Habitable zone dust levels are a key unknown that must be understood to ensure the success of future space missions to image Earth analogs around nearby stars. Current detection limits are several orders of magnitude above the level of the solar system's zodiacal cloud, so characterization of the brightness distribution of exo-zodi down to much fainter levels is needed. To this end, the Large Binocular Telescope Interferometer (LBTI) will detect thermal emission from habitable zone exo-zodi a few times brighter than solar system levels. Here we present a modeling framework for interpreting LBTI observations, which yields dust levels from detections and upper limits that are then converted into predictions and upper limits for the scattered light surface brightness. We apply this model to the HOSTS survey sample of nearby stars; assuming a null depth uncertainty of 10^(–4) the LBTI will be sensitive to dust a few times above the solar system level around Sun-like stars, and to even lower dust levels for more massive stars

    Planet Formation Imager (PFI): science vision and key requirements

    Get PDF
    The Planet Formation Imager (PFI) project aims to provide a strong scientific vision for ground-based optical astronomy beyond the upcoming generation of Extremely Large Telescopes. We make the case that a breakthrough in angular resolution imaging capabilities is required in order to unravel the processes involved in planet formation. PFI will be optimised to provide a complete census of the protoplanet population at all stellocentric radii and over the age range from 0.1 to ~100 Myr. Within this age period, planetary systems undergo dramatic changes and the final architecture of planetary systems is determined. Our goal is to study the planetary birth on the natural spatial scale where the material is assembled, which is the "Hill Sphere" of the forming planet, and to characterise the protoplanetary cores by measuring their masses and physical properties. Our science working group has investigated the observational characteristics of these young protoplanets as well as the migration mechanisms that might alter the system architecture. We simulated the imprints that the planets leave in the disk and study how PFI could revolutionise areas ranging from exoplanet to extragalactic science. In this contribution we outline the key science drivers of PFI and discuss the requirements that will guide the technology choices, the site selection, and potential science/technology tradeoffs.S.K. acknowledges support from an STFC Rutherford Fellowship (ST/J004030/1) and Philip Leverhulme Prize (PLP-2013-110). Part of this work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration

    User evaluation of augmented reality systems

    No full text
    corecore