33 research outputs found

    KGI: An Integrated Framework for Knowledge Intensive Language Tasks

    Full text link
    In a recent work, we presented a novel state-of-the-art approach to zero-shot slot filling that extends dense passage retrieval with hard negatives and robust training procedures for retrieval augmented generation models. In this paper, we propose a system based on an enhanced version of this approach where we train task specific models for other knowledge intensive language tasks, such as open domain question answering (QA), dialogue and fact checking. Our system achieves results comparable to the best models in the KILT leaderboards. Moreover, given a user query, we show how the output from these different models can be combined to cross-examine each other. Particularly, we show how accuracy in dialogue can be improved using the QA model. A short video demonstrating the system is available here - \url{https://ibm.box.com/v/kgi-interactive-demo}

    Hypernym Detection Using Strict Partial Order Networks

    Full text link
    This paper introduces Strict Partial Order Networks (SPON), a novel neural network architecture designed to enforce asymmetry and transitive properties as soft constraints. We apply it to induce hypernymy relations by training with is-a pairs. We also present an augmented variant of SPON that can generalize type information learned for in-vocabulary terms to previously unseen ones. An extensive evaluation over eleven benchmarks across different tasks shows that SPON consistently either outperforms or attains the state of the art on all but one of these benchmarks.Comment: 8 page

    Oxidizability assay of unfractionated plasma of patients’ with different plasma profile: a methodological study

    Get PDF
    BACKGROUND: Present study describe the in vitro model of plasma oxidation of patients with different lipid profile, that can be correlated to their invivo plasma oxidizability in order to find the arterial diseases prone patient groups. METHOD: The method applied here to measure the invitro plasma oxidizability, accounts a convenient way that can be well suited in any clinical laboratory settings. Un-fractionated plasma was exposed to CuSO4 (5.0 mmol/L), a pro-oxidant, and low frequency ultrasonic wave to induce oxidation, and finally oxidizability was calculated by TBARS and Conjugated Diene methods. RESULT: In our study, plasma LDL greater than 150 mg/dL possess 1.75 times more risk to undergo oxidation (CI, 0.7774 to 3.94; p = 0.071) than the low LDL plasma, percent of oxidation increased from 38.3% to 67.1% for the LDL level upto 150 mg/dL and high. Lag phase, which is considered as the plasma antioxidative protection, was also influenced by the higher LDL concentration. The mean lag time was 65.27 ± 20.02 (p = 0.02 compared to healthy), where as for 94.71 ± 35.11 min for the normolipidemic subject. The plasma oxidizability was also changed drastically for total cholesterol level, oxidative susceptibility shown 35% and 55.02% for 200 mg/dL and high respectively, however it didn’t appear as risk factor. Patient samples were also stratified according to their age, gender, and blood glucose level. Older persons (≥40 years) were 1.096 times (95% CL, 0.5607 to 2.141, p = 0.396) than younger (≤39 years age), males are 1.071 (95% CI, 0.5072- 2.264) times than the females, and diabetic patients are 1.091 (CI, 0.6153 to 1.934, p = 0.391) times in more risk than the non-diabetic counterpart. CONCLUSION: This method addressing its easy applicability in biomedical research. And by this we were able to show that patients with high LDL (≥150 mg/dL) are in alarming condition besides diabetic and elderly (≥40 years age) males are considered to be susceptible and more prone to develop vascular diseases

    Taxonomy Construction of Unseen Domains via Graph-based Cross-Domain Knowledge Transfer

    Get PDF
    Extracting lexico-semantic relations as graph-structured taxonomies, also known as taxonomy construction, has been beneficial in a variety of NLP applications. Recently Graph Neural Network (GNN) has shown to be powerful in successfully tackling many tasks. However, there has been no attempt to exploit GNN to create taxonomies. In this paper, we propose Graph2Taxo, a GNN-based cross-domain transfer framework for the taxonomy construction task. Our main contribution is to learn the latent features of taxonomy construction from existing domains to guide the structure learning of an unseen domain. We also propose a novel method of directed acyclic graph (DAG) generation for taxonomy construction. Specifically, our proposed Graph2Taxo uses a noisy graph constructed from automatically extracted noisy hyponym hypernym candidate pairs, and a set of taxonomies for some known domains for training. The learned model is then used to generate taxonomy for a new unknown domain given a set of terms for that domain. Experiments on benchmark datasets from science and environment domains show that our approach attains significant improvements correspondingly over the state of the art

    Adaptation of LIMSI's QALC for QA4MRE.

    Get PDF
    International audienceIn this paper, we present LIMSI participation to one of the pilot tasks of QA4MRE at CLEF 2012: Machine Reading of Biomedical Texts about Alzheimer. For this exercise, we adapted an existing question answering (QA) system, QALC, by searching answers in the reading document. This basic version was used for the evaluation and obtains 0.2, which was increased to 0.325 after basic corrections. We developed then different methods for choosing an answer, based on the expected answer type and the question plus answer rewritten to form hypothesis compared with candidates sentences. We also conducted studies on relation extraction by using an existing system. The last version of our system obtains 0.375

    Assessment of NER solutions against the first and second CALBC Silver Standard Corpus

    Get PDF
    Background Competitions in text mining have been used to measure the performance of automatic text processing solutions against a manually annotated gold standard corpus (GSC). The preparation of the GSC is time-consuming and costly and the final corpus consists at the most of a few thousand documents annotated with a limited set of semantic groups. To overcome these shortcomings, the CALBC project partners (PPs) have produced a large-scale annotated biomedical corpus with four different semantic groups through the harmonisation of annotations from automatic text mining solutions, the first version of the Silver Standard Corpus (SSC-I). The four semantic groups are chemical entities and drugs (CHED), genes and proteins (PRGE), diseases and disorders (DISO) and species (SPE). This corpus has been used for the First CALBC Challenge asking the participants to annotate the corpus with their text processing solutions. Results All four PPs from the CALBC project and in addition, 12 challenge participants (CPs) contributed annotated data sets for an evaluation against the SSC-I. CPs could ignore the training data and deliver the annotations from their genuine annotation system, or could train a machine-learning approach on the provided pre-annotated data. In general, the performances of the annotation solutions were lower for entities from the categories CHED and PRGE in comparison to the identification of entities categorized as DISO and SPE. The best performance over all semantic groups were achieved from two annotation solutions that have been trained on the SSC-I. The data sets from participants were used to generate the harmonised Silver Standard Corpus II (SSC-II), if the participant did not make use of the annotated data set from the SSC-I for training purposes. The performances of the participants’ solutions were again measured against the SSC-II. The performances of the annotation solutions showed again better results for DISO and SPE in comparison to CHED and PRGE. Conclusions The SSC-I delivers a large set of annotations (1,121,705) for a large number of documents (100,000 Medline abstracts). The annotations cover four different semantic groups and are sufficiently homogeneous to be reproduced with a trained classifier leading to an average F-measure of 85%. Benchmarking the annotation solutions against the SSC-II leads to better performance for the CPs’ annotation solutions in comparison to the SSC-I

    Global incidence, prevalence, years lived with disability (YLDs), disability-adjusted life-years (DALYs), and healthy life expectancy (HALE) for 371 diseases and injuries in 204 countries and territories and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Detailed, comprehensive, and timely reporting on population health by underlying causes of disability and premature death is crucial to understanding and responding to complex patterns of disease and injury burden over time and across age groups, sexes, and locations. The availability of disease burden estimates can promote evidence-based interventions that enable public health researchers, policy makers, and other professionals to implement strategies that can mitigate diseases. It can also facilitate more rigorous monitoring of progress towards national and international health targets, such as the Sustainable Development Goals. For three decades, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) has filled that need. A global network of collaborators contributed to the production of GBD 2021 by providing, reviewing, and analysing all available data. GBD estimates are updated routinely with additional data and refined analytical methods. GBD 2021 presents, for the first time, estimates of health loss due to the COVID-19 pandemic. Methods: The GBD 2021 disease and injury burden analysis estimated years lived with disability (YLDs), years of life lost (YLLs), disability-adjusted life-years (DALYs), and healthy life expectancy (HALE) for 371 diseases and injuries using 100 983 data sources. Data were extracted from vital registration systems, verbal autopsies, censuses, household surveys, disease-specific registries, health service contact data, and other sources. YLDs were calculated by multiplying cause-age-sex-location-year-specific prevalence of sequelae by their respective disability weights, for each disease and injury. YLLs were calculated by multiplying cause-age-sex-location-year-specific deaths by the standard life expectancy at the age that death occurred. DALYs were calculated by summing YLDs and YLLs. HALE estimates were produced using YLDs per capita and age-specific mortality rates by location, age, sex, year, and cause. 95% uncertainty intervals (UIs) were generated for all final estimates as the 2·5th and 97·5th percentiles values of 500 draws. Uncertainty was propagated at each step of the estimation process. Counts and age-standardised rates were calculated globally, for seven super-regions, 21 regions, 204 countries and territories (including 21 countries with subnational locations), and 811 subnational locations, from 1990 to 2021. Here we report data for 2010 to 2021 to highlight trends in disease burden over the past decade and through the first 2 years of the COVID-19 pandemic. Findings: Global DALYs increased from 2·63 billion (95% UI 2·44–2·85) in 2010 to 2·88 billion (2·64–3·15) in 2021 for all causes combined. Much of this increase in the number of DALYs was due to population growth and ageing, as indicated by a decrease in global age-standardised all-cause DALY rates of 14·2% (95% UI 10·7–17·3) between 2010 and 2019. Notably, however, this decrease in rates reversed during the first 2 years of the COVID-19 pandemic, with increases in global age-standardised all-cause DALY rates since 2019 of 4·1% (1·8–6·3) in 2020 and 7·2% (4·7–10·0) in 2021. In 2021, COVID-19 was the leading cause of DALYs globally (212·0 million [198·0–234·5] DALYs), followed by ischaemic heart disease (188·3 million [176·7–198·3]), neonatal disorders (186·3 million [162·3–214·9]), and stroke (160·4 million [148·0–171·7]). However, notable health gains were seen among other leading communicable, maternal, neonatal, and nutritional (CMNN) diseases. Globally between 2010 and 2021, the age-standardised DALY rates for HIV/AIDS decreased by 47·8% (43·3–51·7) and for diarrhoeal diseases decreased by 47·0% (39·9–52·9). Non-communicable diseases contributed 1·73 billion (95% UI 1·54–1·94) DALYs in 2021, with a decrease in age-standardised DALY rates since 2010 of 6·4% (95% UI 3·5–9·5). Between 2010 and 2021, among the 25 leading Level 3 causes, age-standardised DALY rates increased most substantially for anxiety disorders (16·7% [14·0–19·8]), depressive disorders (16·4% [11·9–21·3]), and diabetes (14·0% [10·0–17·4]). Age-standardised DALY rates due to injuries decreased globally by 24·0% (20·7–27·2) between 2010 and 2021, although improvements were not uniform across locations, ages, and sexes. Globally, HALE at birth improved slightly, from 61·3 years (58·6–63·6) in 2010 to 62·2 years (59·4–64·7) in 2021. However, despite this overall increase, HALE decreased by 2·2% (1·6–2·9) between 2019 and 2021. Interpretation: Putting the COVID-19 pandemic in the context of a mutually exclusive and collectively exhaustive list of causes of health loss is crucial to understanding its impact and ensuring that health funding and policy address needs at both local and global levels through cost-effective and evidence-based interventions. A global epidemiological transition remains underway. Our findings suggest that prioritising non-communicable disease prevention and treatment policies, as well as strengthening health systems, continues to be crucially important. The progress on reducing the burden of CMNN diseases must not stall; although global trends are improving, the burden of CMNN diseases remains unacceptably high. Evidence-based interventions will help save the lives of young children and mothers and improve the overall health and economic conditions of societies across the world. Governments and multilateral organisations should prioritise pandemic preparedness planning alongside efforts to reduce the burden of diseases and injuries that will strain resources in the coming decades. Funding: Bill & Melinda Gates Foundation
    corecore