19 research outputs found

    Novel functional hepatitis C virus glycoprotein isolates identified using an optimised viral pseudotype entry assay

    Get PDF
    Retrovirus pseudotypes are a highly tractable model used to study the entry pathways of enveloped viruses. This model has been extensively applied to the study of the hepatitis C virus (HCV) entry pathway, pre-clinical screening of antiviral antibodies and for assessing the phenotype of patient-derived viruses using HCV pseudoparticles (HCVpp) possessing the HCV E1 and E2 glycoproteins. However, not all patient-isolated clones produce particles that are infectious in this model. This study investigated factors that might limit phenotyping of patient-isolated HCV glycoproteins. Genetically related HCV glycoproteins from individual patient quasispecies were discovered to behave very differently in this entry model. Empirical optimisation of the ratio of packaging construct and glycoprotein-encoding plasmid was required for successful HCVpp genesis for different clones. The selection of retroviral packaging construct also influenced the function of HCV pseudoparticles. Some glycoprotein constructs tolerated a wide range of assay parameters, while others were much more sensitive to alterations. Furthermore, glycoproteins previously characterised as unable to mediate entry were found to be functional. These findings were validated using chimeric cell-cultured HCV bearing these glycoproteins. Using the same empirical approach we demonstrated that generation of infectious ebolavirus pseudoviruses (EBOVpv) were also sensitive to the amount, and ratio, of plasmids used, and that protocols for optimal production of these pseudoviruses is dependent on the exact virus glycoprotein construct. These findings demonstrate that it is crucial for studies utilising pseudoviruses to conduct empirical optimisation of pseudotype production for each specific glycoprotein sequence to achieve optimal titres and facilitate accurate phenotyping

    The antiviral role of zinc and metallothioneins in hepatitis C infection

    No full text
    Metallothioneins (MTs) are small, cysteine-rich proteins characterized by a high affinity for monovalent and divalent cations, such as copper and zinc. Of the four known MT isoforms, only, members of the MT 1 and 2 subfamilies are widely expressed, acting as metal chaperones whose primary role is to mediate intracellular zinc homoeostasis. Metallothioneins are potently induced by heavy metals and other sources of oxidative stress where they facilitate metal binding and detoxification as well as free radical scavenging. Metallothionein expression is well documented in the context of viral infection; however, it remains uncertain whether MTs possess specific antiviral roles or whether induction is merely a consequence of cellular stress. To better understand the role of MTs following hepatitis C virus (HCV) infection, we examined MT expression and localization in vitro and in vivo and used a siRNA knockdown approach to ascertain their antiviral efficacy. We confirmed HCV-driven MT induction in vitro and demonstrated MT accumulation in the nucleus of HCV-infected hepatocytes by immunofluorescence. Using a pan-MT siRNA to knock down all members of the MT1 and MT2 subfamilies, we demonstrate that they are mildly antiviral against the JFH1 strain of HCV in vitro (~1.4 fold increase in viral RNA, P < .05). Furthermore, the antiviral effect of zinc treatment against HCV in vitro was mediated through MT induction (P < .05). Our data suggest a potential benefit of using zinc as a low-cost adjunct to current HCV antiviral therapies and suggest that zinc may facilitate the antiviral role of MTs against other viruses

    M1 of Murine Gamma-Herpesvirus 68 Induces Endoplasmic Reticulum Chaperone Production

    No full text
    Viruses rely on host chaperone network to support their infection. In particular, the endoplasmic reticulum (ER) resident chaperones play key roles in synthesizing and processing viral proteins. Influx of a large amount of foreign proteins exhausts the folding capacity in ER and triggers the unfolded protein response (UPR). A fully-executed UPR comprises signaling pathways that induce ER folding chaperones, increase protein degradation, block new protein synthesis and may eventually activate apoptosis, presenting both opportunities and threats to the virus. Here, we define a role of the MHV-68M1 gene in differential modulation of UPR pathways to enhance ER chaperone production. Ectopic expression of M1 markedly induces ER chaperone genes and expansion of ER. The M1 protein accumulates in ER during infection and this localization is indispensable for its function, suggesting M1 acts from the ER. We found that M1 protein selectively induces the chaperon-producing pathways (IRE1, ATF6) while, interestingly, sparing the translation-blocking arm (PERK). We identified, for the first time, a viral factor capable of selectively intervening the initiation of ER stress signaling to induce chaperon production. This finding provides a unique opportunity of using viral protein as a tool to define the activation mechanisms of individual UPR pathways
    corecore