701 research outputs found

    A simple variational approach to the quantum Frenkel-Kontorova model

    Full text link
    We present a simple and complete variational approach to the one-dimensional quantum Frenkel-Kontorova model. Dirac's time-dependent variational principle is adopted together with a Hatree-type many-body trial wavefunction for the atoms. The single-particle state is assumed to have the Jackiw-Kerman form. We obtain an effective classical Hamiltonian for the system which is simple enough for a complete numerical solution for the static ground state of the model. Numerical results show that our simple approach captures the essence of the quantum effects first observed in quantum Monte Carlo studies.Comment: 12 pages, 2 figure

    An Exact Diagonalization Demonstration of Incommensurability and Rigid Band Filling for N Holes in the t-J Model

    Full text link
    We have calculated S(q) and the single particle distribution function for N holes in the t - J model on a non--square sqrt{8} X sqrt{32} 16--site lattice with periodic boundary conditions; we justify the use of this lattice in compariosn to those of having the full square symmetry of the bulk. This new cluster has a high density of vec k points along the diagonal of reciprocal space, viz. along k = (k,k). The results clearly demonstrate that when the single hole problem has a ground state with a system momentum of vec k = (pi/2,pi/2), the resulting ground state for N holes involves a shift of the peak of the system's structure factor away from the antiferromagnetic state. This shift effectively increases continuously with N. When the single hole problem has a ground state with a momentum that is not equal to k = (pi/2,pi/2), then the above--mentioned incommensurability for N holes is not found. The results for the incommensurate ground states can be understood in terms of rigid--band filling: the effective occupation of the single hole k = (pi/2,pi/2) states is demonstrated by the evaluation of the single particle momentum distribution function . Unlike many previous studies, we show that for the many hole ground state the occupied momentum states are indeed k = (+/- pi/2,+/- pi/2) states.Comment: Revtex 3.0; 23 pages, 1 table, and 13 figures, all include

    Efficient photoionization for barium ion trapping using a dipole-allowed resonant two-photon transition

    Full text link
    Two efficient and isotope-selective resonant two-photon ionization techniques for loading barium ions into radio-frequency (RF)-traps are demonstrated. The scheme of using a strong dipole-allowed transition at \lambda=553 nm as a first step towards ionization is compared to the established technique of using a weak intercombination line (\lambda=413 nm). An increase of two orders of magnitude in the ionization efficiency is found favoring the transition at 553 nm. This technique can be implemented using commercial all-solid-state laser systems and is expected to be advantageous compared to other narrowband photoionization schemes of barium in cases where highest efficiency and isotope-selectivity are required.Comment: 8 pages, 5 figure

    Non-Perturbative QCD Treatment of High-Energy Hadron-Hadron Scattering

    Full text link
    Total cross-sections and logarithmic slopes of the elastic scattering cross-sections for different hadronic processes are calculated in the framework of the model of the stochastic vacuum. The relevant parameters of this model, a correlation length and the gluon condensate, are determined from scattering data, and found to be in very good agreement with values coming from completely different sources of information. A parameter-free relation is given between total cross-sections and slope parameters, which is shown to be remarkably valid up to the highest energies for which data exist.Comment: 60 pages, Heidelberg preprin

    Dynamical renormalization group approach to relaxation in quantum field theory

    Full text link
    The real time evolution and relaxation of expectation values of quantum fields and of quantum states are computed as initial value problems by implementing the dynamical renormalization group (DRG).Linear response is invoked to set up the renormalized initial value problem to study the dynamics of the expectation value of quantum fields. The perturbative solution of the equations of motion for the field expectation values of quantum fields as well as the evolution of quantum states features secular terms, namely terms that grow in time and invalidate the perturbative expansion for late times. The DRG provides a consistent framework to resum these secular terms and yields a uniform asymptotic expansion at long times. Several relevant cases are studied in detail, including those of threshold infrared divergences which appear in gauge theories at finite temperature and lead to anomalous relaxation. In these cases the DRG is shown to provide a resummation akin to Bloch-Nordsieck but directly in real time and that goes beyond the scope of Bloch-Nordsieck and Dyson resummations. The nature of the resummation program is discussed in several examples. The DRG provides a framework that is consistent, systematic and easy to implement to study the non-equilibrium relaxational dynamics directly in real time that does not rely on the concept of quasiparticle widths.Comment: LaTex, 27 pages, 2 .ps figure

    The Horizontal Component of Photospheric Plasma Flows During the Emergence of Active Regions on the Sun

    Full text link
    The dynamics of horizontal plasma flows during the first hours of the emergence of active region magnetic flux in the solar photosphere have been analyzed using SOHO/MDI data. Four active regions emerging near the solar limb have been considered. It has been found that extended regions of Doppler velocities with different signs are formed in the first hours of the magnetic flux emergence in the horizontal velocity field. The flows observed are directly connected with the emerging magnetic flux; they form at the beginning of the emergence of active regions and are present for a few hours. The Doppler velocities of flows observed increase gradually and reach their peak values 4-12 hours after the start of the magnetic flux emergence. The peak values of the mean (inside the +/-500 m/s isolines) and maximum Doppler velocities are 800-970 m/s and 1410-1700 m/s, respectively. The Doppler velocities observed substantially exceed the separation velocities of the photospheric magnetic flux outer boundaries. The asymmetry was detected between velocity structures of leading and following polarities. Doppler velocity structures located in a region of leading magnetic polarity are more powerful and exist longer than those in regions of following polarity. The Doppler velocity asymmetry between the velocity structures of opposite sign reaches its peak values soon after the emergence begins and then gradually drops within 7-12 hours. The peak values of asymmetry for the mean and maximal Doppler velocities reach 240-460 m/s and 710-940 m/s, respectively. An interpretation of the observable flow of photospheric plasma is given.Comment: 20 pages, 10 figures, 3 tables. The results of article were presented at the ESPM-13 (12-16 September 2011, Rhodes, Greece, Abstract Book p. 102, P.4.12, http://astro.academyofathens.gr/espm13/documents/ESPM13_abstract_programme_book.pdf

    The Relationship Between Plasma Flow Doppler Velocities and Magnetic Field Parameters During the Emergence of Active Regions at the Solar Photospheric Level

    Full text link
    A statistical study has been carried out of the relationship between plasma flow Doppler velocities and magnetic field parameters during the emergence of active regions at the solar photospheric level with data acquired by the Michelson Doppler Imager (MDI) onboard the Solar and Heliospheric Observatory (SOHO). We have investigated 224 emerging active regions with different spatial scales and positions on the solar disc. The following relationships for the first hours of the emergence of active regions have been analysed: i) of peak negative Doppler velocities with the position of the emerging active regions on the solar disc; ii) of peak plasma upflow and downflow Doppler velocities with the magnetic flux growth rate and magnetic field strength for the active regions emerging near the solar disc centre (the vertical component of plasma flows); iii) of peak positive and negative Doppler velocities with the magnetic flux growth rate and magnetic field strength for the active regions emerging near the limb (the horizontal component of plasma flows); iv) of the magnetic flux growth rate with the density of emerging magnetic flux; v) of the Doppler velocities and magnetic field parameters for the first hours of the appearance of active regions with the total unsigned magnetic flux at the maximum of their development.Comment: 14 pages, 8 figures. The results of article were presented at the ESPM-13 (12-16 September 2011, Rhodes, Greece, Abstract Book p. 102-103, P.4.13, http://astro.academyofathens.gr/espm13/documents/ESPM13_abstract_programme_book.pdf

    14Be(p,n)14B reaction at 69 MeV in inverse kinematics

    Get PDF
    A Gamow-Teller (GT) transition from the drip-line nucleus 14Be to 14B was studied via the (p,n) reaction in inverse kinematics using a secondary 14Be beam at 69 MeV/nucleon. The invariant mass method is employed to reconstruct the energy spectrum. A peak is observed at an excitation energy of 1.27(2) MeV in 14B, together with bumps at 2.08 and 4.06(5) MeV. The observed forward peaking of the state at 1.27 MeV and a good description for the differential cross section, obtained with a DWBA calculation provide support for the 1+ assignment to this state. By extrapolating the cross section to zero momentum transfer the GT-transition strength is deduced. The value is found to compare well with that reported in a beta-delayed neutron emission study.Comment: 5 pages, 2 figure

    Nonequilibrium pion dynamics near the critical point in a constituent quark model

    Full text link
    We study static and dynamical critical phenomena of chiral symmetry breaking in a two-flavor Nambu--Jona-Lasinio constituent quark model. We obtain the low-energy effective action for scalar and pseudoscalar degrees of freedom to lowest order in quark loops and to quadratic order in the meson fluctuations around the mean field. The \emph{static} limit of critical phenomena is shown to be described by a Ginzburg-Landau effective action including \emph{spatial} gradients. Hence \emph{static} critical phenomena is described by the universality class of the O(4) Heisenberg ferromagnet. \emph{Dynamical} critical phenomena is studied by obtaining the equations of motion for pion fluctuations. We find that for T<TcT<T_c the are stable long-wavelength pion excitations with dispersion relation ωπ(k)=k\omega_{\pi}(k)=k described by isolated pion poles. The residue of the pion pole vanishes near TcT_c as Z1/ln(1T/Tc)Z \propto 1/|\ln(1-T/T_c)| and long-wavelength fluctuations are damped out by Landau damping on a time scale trel(k)1/kt_\mathrm{rel}(k)\propto 1/k, reflecting \emph{critical slowing down} of pion fluctuations near the critical point. At the critical point, the pion propagator features mass shell logarithmic divergences which we conjecture to be the harbinger of a (large) dynamical anomalous dimension. We find that while the \emph{classical spinodal} line coincides with that of the Ginzburg-Landau theory, the growth rate of long-wavelength spinodal fluctuations has a richer wavelength dependence as a consequence of Landau damping. We argue that Landau damping prevents a \emph{local} low energy effective action in terms of a derivative expansion in real time.Comment: 22 pages 5 figures. to appear in Nucl. Phys.

    A synthetic biology approach to probing nucleosome symmetry

    Get PDF
    The repeating subunit of chromatin, the nucleosome, includes two copies of each of the four core histones, and several recent studies have reported that asymmetrically-modified nucleosomes occur at regulatory elements in vivo. To probe the mechanisms by which histone modifications are read out, we designed an obligate pair of H3 heterodimers, termed H3X and H3Y, which we extensively validated genetically and biochemically. Comparing the effects of asymmetric histone tail point mutants with those of symmetric double mutants revealed that a single methylated H3K36 per nucleosome was sufficient to silence cryptic transcription in vivo. We also demonstrate the utility of this system for analysis of histone modification crosstalk, using mass spectrometry to separately identify modifications on each H3 molecule within asymmetric nucleosomes. The ability to generate asymmetric nucleosomes in vivo and in vitro provides a powerful and generalizable tool to probe the mechanisms by which H3 tails are read out by effector proteins in the cell
    corecore