221 research outputs found

    Some Considerations on the Measuring Method of the Thixotropic Properties of Some Clay Slips

    Get PDF

    Feasibility of extracting a Σ\Sigma^- admixture probability in the neutron-rich Λ10^{10}_{\Lambda}Li hypernucleus

    Full text link
    We examine theoretically production of the neutron-rich Λ10^{10}_{\Lambda}Li hypernucleus by a double-charge exchange (π\pi^-, K+K^+) reaction on a 10^{10}B target with distorted-wave impulse approximation calculations. The result shows that the magnitude and shape of the calculated spectrum at 1.20 GeV/c by a one-step mechanism πpK+Σ\pi^-p \to K^+ \Sigma^- via Σ\Sigma^- doorways caused by a ΣpΛn\Sigma^-p \leftrightarrow \Lambda n coupling can explain the recent experimental data, and the Σ\Sigma^- admixture probability in Λ10^{10}_{\Lambda}Li is found to be the order of 101^{-1} %. The (π\pi^-, K+K^+) reaction provides a capability of extracting properties of wave functions with Λ\Lambda-Σ\Sigma coupling effects in neutron-rich nuclei, together with the reaction mechanism.Comment: 13 pages, 3 figure

    Tensor-optimized shell model for the Li isotopes with a bare nucleon-nucleon interaction

    Full text link
    We study the Li isotopes systematically in terms of the tensor-optimized shell model (TOSM) by using a bare nucleon-nucleon interaction as the AV8' interaction. The short-range correlation is treated in the unitary correlation operator method (UCOM). Using the TOSM+UCOM approach, we investigate the role of the tensor force on each spectrum of the Li isotopes. It is found that the tensor force produces quite a characteristic effect on various states in each spectrum and those spectra are affected considerably by the tensor force. The energy difference between the spin-orbit partner, the p1/2 and p3/2 orbits of the last neutron, in 5Li is caused by opposite roles of the tensor correlation. In 6Li, the spin-triplet state in the LS coupling configuration is favored energetically by the tensor force in comparison with jj coupling shell model states. In 7,8,9Li, the low-lying states containing extra neutrons in the p3/2 orbit are favored energetically due to the large tensor contribution to allow the excitation from the 0s orbit to the p1/2 orbit by the tensor force. Those three nuclei show the jj coupling character in their ground states which is different from 6Li.Comment: 12 pages, 6 figures. arXiv admin note: text overlap with arXiv:1108.393

    Shell evolution and nuclear forces

    Full text link
    We present a quantitative study of the role played by different components characterizing the nucleon-nucleon interaction in the evolution of the nuclear shell structure. It is based on the spin-tensor decomposition of an effective two-body shell-model interaction and the subsequent study of effective single-particle energy variations in a series of isotopes or isotones. The technique allows to separate unambiguously contributions of the central, vector and tensor components of the realistic effective interaction. We show that while the global variation of the single-particle energies is due to the central component of the effective interaction, the characteristic behavior of spin-orbit partners, noticed recently, is mainly due to its tensor part. Based on the analysis of a well-fitted realistic interaction in sdpf-shell model space, we analyze in detail the role played by the different terms in the formation and/or disappearance of N=16, N=20 and N=28 shell gaps in neutron-rich nuclei.Comment: 6 pages, 4 figure

    The Λ\Lambda-Σ\Sigma coupling effect in the neutron-rich Λ\Lambda-hypernucleus Λ10_{\Lambda}^{10}Li by microscopic shell model

    Full text link
    We investigate the structure of the neutron-rich Λ\Lambda-hypernucleus Λ10_{\Lambda}^{10}Li by using microscopic shell-model calculations considering a Λ\Lambda-Σ\Sigma coupling effect. The calculated Σ\Sigma-mixing probability in the Λ10_{\Lambda}^{10}Li ground state is found to be about 0.34 % which is coherently enhanced by the Λ\Lambda-Σ\Sigma coupling configurations, leading to the energy shift 0.28 MeV which is about 3 times larger than that in Λ7_{\Lambda}^{7}Li. The importance of the Σ\Sigma configuration obtained by the ΣN\Sigma N interaction and the potentiality of the neutron-rich environment are discussed.Comment: 6 figure

    Role of the tensor interaction in He isotopes with a tensor-optimized shell model

    Full text link
    We studied the role of the tensor interaction in He isotopes systematically on the basis of the tensor-optimized shell model (TOSM). We use a bare nucleon-nucleon interaction AV8 obtained from nucleon-nucleon scattering data. The short-range correlation is treated in the unitary correlation operator method (UCOM). Using the TOSM+UCOM approach, we investigate the role of tensor interaction on each spectrum in He isotopes. It is found that the tensor interaction enhances the LS splitting energy observed in 5He, in which the p1/2 and p3/2 orbits play different roles on the tensor correlation. In {6,7,8}He, the low-lying states containing extra neutrons in the p3/2 orbit gain the tensor contribution. On the other hand, the excited states containing extra neutrons in the p1/2 orbit lose the tensor contribution due to the Pauli-blocking effect with the 2p2h states in the 4He core configuration.Comment: 11 pages, 8 figure

    Shell-model calculations for p-shell hypernuclei

    Full text link
    The interpretation of hypernuclear gamma-ray data for p-shell hypernuclei in terms of shell-model calculations that include the coupling of Lambda- and Sigma-hypernuclear states is briefly reviewed. Next, Lambda 8Li, Lambda 8Be, and Lambda 9Li are considered, both to exhibit features of Lambda-Sigma coupling and as possible source of observed, but unassigned, hypernuclear gamma rays. Then, the feasibility of measuring the ground-state doublet spacing of Lambda 10Be, which, like Lambda 9Li, could be studied via the (K-,pi0 gamma) reaction, is investigated. Structural information relevant to the population of states in these hypernuclei in recent (e,e'K+) studies is also given. Finally, the extension of the shell-model calculations to sd-shell hypernuclei is briefly considered.Comment: 17 pages, 3 figures. Contribution to special volume on Strangeness Nuclear Physic

    Production of doubly strange hypernuclei via {\Xi}- doorways in the 16O(K-, K+) reaction at 1.8 GeV/c

    Get PDF
    We examine theoretically production of doubly strange hypernuclei, 16 {\Xi}-C and 16 {\Lambda}{\Lambda}C, in doublecharge exchange 16O(K-, K+) reactions using a distorted-wave impulse approximation. The inclusive K+ spectrum at the incident momentum pK- = 1.8 GeV/c and scattering angle {\theta}lab = 0^{\circ} is estimated in a one-step mechanism, K-p \to K+{\Xi}- via {\Xi}- doorways caused by a {\Xi}-p-{\Lambda}{\Lambda} coupling. The calculated spectrum in the {\Xi}- bound region indicates that the integrated cross sections are on the order of 7-12 nb/sr for significant 1- excited states with 14C(0+, 2+) \otimes s{\Lambda}p{\Lambda} configurations in 16 {\Lambda}{\Lambda}C via the doorway states of the spin-stretched 15N(1/2-, 3/2-) \otimes s{\Xi}- in 16 {\Xi}-C due to a high momentum transfer q{\Xi}- \approx 400 MeV/c. The {\Xi}- admixture probabilities of these states are on the order of 5-9%. However, populations of the 0+ ground state with 14C(0+) \otimes s2{\Lambda} and the 2+ excited state with 14C(2+) \otimes s2 {\Lambda} are very small. The sensitivity of the spectrum on the {\Xi}N-{\Lambda}{\Lambda} coupling strength enables us to extract the nature of {\Xi}N-{\Lambda}{\Lambda} dynamics in nuclei, and the nuclear (K-, K+) reaction can extend our knowledge of the S = -2 world.Comment: 10 pages, 3 figure
    corecore