101 research outputs found

    Pathogen genomic surveillance status among lower resource settings in Asia

    Get PDF
    Asia remains vulnerable to new and emerging infectious diseases. Understanding how to improve next generation sequencing (NGS) use in pathogen surveillance is an urgent priority for regional health security. Here we developed a pathogen genomic surveillance assessment framework to assess capacity in low-resource settings in South and Southeast Asia. Data collected between June 2022 and March 2023 from 42 institutions in 13 countries showed pathogen genomics capacity exists, but use is limited and under-resourced. All countries had NGS capacity and seven countries had strategic plans integrating pathogen genomics into wider surveillance efforts. Several pathogens were prioritized for human surveillance, but NGS application to environmental and human–animal interface surveillance was limited. Barriers to NGS implementation include reliance on external funding, supply chain challenges, trained personnel shortages and limited quality assurance mechanisms. Coordinated efforts are required to support national planning, address capacity gaps, enhance quality assurance and facilitate data sharing for decision making

    Cloning of the Repertoire of Individual Plasmodium falciparum var Genes Using Transformation Associated Recombination (TAR)

    Get PDF
    One of the major virulence factors of the malaria causing parasite is the Plasmodium falciparum encoded erythrocyte membrane protein 1 (PfEMP1). It is translocated to It the membrane of infected erythrocytes and expressed from approximately 60 var genes in a mutually exclusive manner. Switching of var genes allows the parasite to alter functional and antigenic properties of infected erythrocytes, to escape the immune defense and to establish chronic infections. We have developed an efficient method for isolating VAR genes from telomeric and other genome locations by adapting transformation-associated recombination (TAR) cloning, which can then be analyzed and sequenced. For this purpose, three plasmids each containing a homologous sequence representing the upstream regions of the group A, B, and C var genes and a sequence homologous to the conserved acidic terminal segment (ATS) of var genes were generated. Co-transfection with P. falciparum strain ITG2F6 genomic DNA in yeast cells yielded 200 TAR clones. The relative frequencies of clones from each group were not biased. Clones were screened by PCR, as well as Southern blotting, which revealed clones missed by PCR due to sequence mismatches with the primers. Selected clones were transformed into E. coli and further analyzed by RFLP and end sequencing. Physical analysis of 36 clones revealed 27 distinct types potentially representing 50% of the var gene repertoire. Three clones were selected for sequencing and assembled into single var gene containing contigs. This study demonstrates that it is possible to rapidly obtain the repertoire of var genes from P. falciparum within a single set of cloning experiments. This technique can be applied to individual isolates which will provide a detailed picture of the diversity of var genes in the field. This is a powerful tool to overcome the obstacles with cloning and assembly of multi-gene families by simultaneously cloning each member

    Dynamic Activation and Repression of the Plasmodium falciparum rif Gene Family and Their Relation to Chromatin Modification

    Get PDF
    The regulation of variant gene expression in Plasmodium falciparum is still only partially understood. Regulation of var genes, the most studied gene family involved in antigenic variation, is orchestrated by a dynamic pattern of inherited chromatin states. Although recent evidence pointed to epigenetic regulation of transcribed and repressed rif loci, little is known about specific on/off associated histone modifications of individual rif genes. To investigate the chromatin marks for transcribed and repressed rif loci, we cultivated parasites and evaluated the transcriptional status of chosen rif targets by qRT-PCR and performed ChIP assays using H3K9ac and H3K9me3 antibodies. We then monitored changes in the epigenetic patterns in parasites after several reinvasions and also evaluated the “poised” mark in trophozoites and schizonts of the same erythrocytic cycle by ChIP using H3K4me2 specific antibodies. Our results show that H3K9 is acetylated in transcribed rif loci and trimethylated or even unmodified in repressed rif loci. These transcriptional and epigenetic states are inherited after several reinvasions. The poised modification H3K4me2 showed a tendency to be more present in loci in trophozoites that upon progression to schizonts strongly transcribe the respective locus. However, this effect was not consistently observed for all monitored loci. While our data show important similarities to var transcription-associated chromatin modifications, the observed swiftly occurring modifications at rif loci and the absence of H3K9 modification point to a different dynamic of recruitment of chromatin modifying enzymes

    Default Pathway of var2csa Switching and Translational Repression in Plasmodium falciparum

    Get PDF
    Antigenic variation is a subtle process of fundamental importance to the survival of a microbial pathogen. In Plasmodium falciparum malaria, PfEMP1 is the major variable antigen and adhesin expressed at the surface of the infected erythrocyte, which is encoded for by members of a family of 60 var-genes. Peri-nuclear repositioning and epigenetic mechanisms control their mono-allelic expression. The switching of PfEMP1 depends in part on variable transition rates and short-lived immune responses to shared minor epitopes. Here we show var-genes to switch to a common gene that is highly transcribed, but sparsely translated into PfEMP1 and not expressed at the erythrocyte surface. Highly clonal and adhesive P. falciparum, which expressed distinct var-genes and the corresponding PfEMP1s at onset, were propagated without enrichment or panning. The parasites successively and spontaneously switched to transcribe a shared var-gene (var2csa) matched by the loss of PfEMP1 surface expression and host cell-binding. The var2csa gene repositioned in the peri-nuclear area upon activation, away from the telomeric clusters and heterochromatin to transcribe spliced, full-length RNA. Despite abundant transcripts, the level of intracellular PfEMP1 was low suggesting post-transcriptional mechanisms to partake in protein expression. In vivo, off-switching and translational repression may constitute one pathway, among others, coordinating PfEMP1 expression

    Antigenic Variation in Plasmodium falciparum Malaria Involves a Highly Structured Switching Pattern

    Get PDF
    Many pathogenic bacteria, fungi, and protozoa achieve chronic infection through an immune evasion strategy known as antigenic variation. In the human malaria parasite Plasmodium falciparum, this involves transcriptional switching among members of the var gene family, causing parasites with different antigenic and phenotypic characteristics to appear at different times within a population. Here we use a genome-wide approach to explore this process in vitro within a set of cloned parasite populations. Our analyses reveal a non-random, highly structured switch pathway where an initially dominant transcript switches via a set of switch-intermediates either to a new dominant transcript, or back to the original. We show that this specific pathway can arise through an evolutionary conflict in which the pathogen has to optimise between safeguarding its limited antigenic repertoire and remaining capable of establishing infections in non-naïve individuals. Our results thus demonstrate a crucial role for structured switching during the early phases of infections and provide a unifying theory of antigenic variation in P. falciparum malaria as a balanced process of parasite-intrinsic switching and immune-mediated selection

    Mathematical Modeling of Malaria Infection with Innate and Adaptive Immunity in Individuals and Agent-Based Communities

    Get PDF
    Background: Agent-based modeling of Plasmodium falciparum infection offers an attractive alternative to the conventional Ross-Macdonald methodology, as it allows simulation of heterogeneous communities subjected to realistic transmission (inoculation patterns). Methodology/Principal Findings: We developed a new, agent based model that accounts for the essential in-host processes: parasite replication and its regulation by innate and adaptive immunity. The model also incorporates a simplified version of antigenic variation by Plasmodium falciparum. We calibrated the model using data from malaria-therapy (MT) studies, and developed a novel calibration procedure that accounts for a deterministic and a pseudo-random component in the observed parasite density patterns. Using the parasite density patterns of 122 MT patients, we generated a large number of calibrated parameters. The resulting data set served as a basis for constructing and simulating heterogeneous agent-based (AB) communities of MT-like hosts. We conducted several numerical experiments subjecting AB communities to realistic inoculation patterns reported from previous field studies, and compared the model output to the observed malaria prevalence in the field. There was overall consistency, supporting the potential of this agent-based methodology to represent transmission in realistic communities. Conclusions/Significance: Our approach represents a novel, convenient and versatile method to model Plasmodiu

    Expression Analysis of the Theileria parva Subtelomere-Encoded Variable Secreted Protein Gene Family

    Get PDF
    Background The intracellular protozoan parasite Theileria parva transforms bovine lymphocytes inducing uncontrolled proliferation. Proteins released from the parasite are assumed to contribute to phenotypic changes of the host cell and parasite persistence. With 85 members, genes encoding subtelomeric variable secreted proteins (SVSPs) form the largest gene family in T. parva. The majority of SVSPs contain predicted signal peptides, suggesting secretion into the host cell cytoplasm. Methodology/Principal Findings We analysed SVSP expression in T. parva-transformed cell lines established in vitro by infection of T or B lymphocytes with cloned T. parva parasites. Microarray and quantitative real-time PCR analysis revealed mRNA expression for a wide range of SVSP genes. The pattern of mRNA expression was largely defined by the parasite genotype and not by host background or cell type, and found to be relatively stable in vitro over a period of two months. Interestingly, immunofluorescence analysis carried out on cell lines established from a cloned parasite showed that expression of a single SVSP encoded by TP03_0882 is limited to only a small percentage of parasites. Epitope-tagged TP03_0882 expressed in mammalian cells was found to translocate into the nucleus, a process that could be attributed to two different nuclear localisation signals. Conclusions Our analysis reveals a complex pattern of Theileria SVSP mRNA expression, which depends on the parasite genotype. Whereas in cell lines established from a cloned parasite transcripts can be found corresponding to a wide range of SVSP genes, only a minority of parasites appear to express a particular SVSP protein. The fact that a number of SVSPs contain functional nuclear localisation signals suggests that proteins released from the parasite could contribute to phenotypic changes of the host cell. This initial characterisation will facilitate future studies on the regulation of SVSP gene expression and the potential biological role of these enigmatic proteins

    The Origin of Intraspecific Variation of Virulence in an Eukaryotic Immune Suppressive Parasite

    Get PDF
    Occurrence of intraspecific variation in parasite virulence, a prerequisite for coevolution of hosts and parasites, has largely been reported. However, surprisingly little is known of the molecular bases of this variation in eukaryotic parasites, with the exception of the antigenic variation used by immune-evading parasites of mammals. The present work aims to address this question in immune suppressive eukaryotic parasites. In Leptopilina boulardi, a parasitic wasp of Drosophila melanogaster, well-defined virulent and avirulent strains have been characterized. The success of virulent females is due to a major immune suppressive factor, LbGAP, a RacGAP protein present in the venom and injected into the host at oviposition. Here, we show that an homologous protein, named LbGAPy, is present in the venom of the avirulent strain. We then question whether the difference in virulence between strains originates from qualitative or quantitative differences in LbGAP and LbGAPy proteins. Results show that the recombinant LbGAPy protein has an in vitro GAP activity equivalent to that of recombinant LbGAP and similarly targets Drosophila Rac1 and Rac2 GTPases. In contrast, a much higher level of both mRNA and protein is found in venom-producing tissues of virulent parasitoids. The F1 offspring between virulent and avirulent strains show an intermediate level of LbGAP in their venom but a full success of parasitism. Interestingly, they express almost exclusively the virulent LbGAP allele in venom-producing tissues. Altogether, our results demonstrate that the major virulence factor in the wasp L. boulardi differs only quantitatively between virulent and avirulent strains, and suggest the existence of a threshold effect of this molecule on parasitoid virulence. We propose that regulation of gene expression might be a major mechanism at the origin of intraspecific variation of virulence in immune suppressive eukaryotic parasites. Understanding this variation would improve our knowledge of the mechanisms of transcriptional evolution currently under active investigation
    corecore