1,538 research outputs found

    Quantifying black carbon deposition over the Greenland ice sheet from forest fires in Canada

    Get PDF
    Black carbon (BC) concentrations observed in 22 snowpits sampled in the northwest sector of the Greenland ice sheet in April 2014 have allowed us to identify a strong and widespread BC aerosol deposition event, which was dated to have accumulated in the pits from two snow storms between 27 July and 2 August 2013. This event comprises a significant portion (57% on average across all pits) of total BC deposition over 10 months (July 2013 to April 2014). Here we link this deposition event to forest fires burning in Canada during summer 2013 using modeling and remote sensing tools. Aerosols were detected by both the Cloud‐Aerosol Lidar with Orthogonal Polarization (on board CALIPSO) and Moderate Resolution Imaging Spectroradiometer (Aqua) instruments during transport between Canada and Greenland. We use high‐resolution regional chemical transport modeling (WRF‐Chem) combined with high‐resolution fire emissions (FINNv1.5) to study aerosol emissions, transport, and deposition during this event. The model captures the timing of the BC deposition event and shows that fires in Canada were the main source of deposited BC. However, the model underpredicts BC deposition compared to measurements at all sites by a factor of 2–100. Underprediction of modeled BC deposition originates from uncertainties in fire emissions and model treatment of wet removal of aerosols. Improvements in model descriptions of precipitation scavenging and emissions from wildfires are needed to correctly predict deposition, which is critical for determining the climate impacts of aerosols that originate from fires

    Sub-Nanosecond Greater-Than-10-V Compact Tunable Pulse Generator for Low-Duty-Cycle High-Peak-Power Ultra-Wideband Applications

    Get PDF
    An ultra-wideband pulse generator was designed and fabricated in GaAs HBT IC technology. The generator includes delay and differential circuits to convert a TTL input into a Gaussian pulse signal as well as a Class-C amplifier to boost the pulse amplitude while compressing the pulse width. By adjusting the collector bias of the Class-C amplifier, the pulse amplitude can be varied linearly between 3.5 V and 11.5 V while maintaining the pulse width at 0.3 ± 0.1 nanosecond. Alternatively, by adjusting the base bias of the Class-C amplifier, the pulse width can be varied linearly between 0.25 ns and 0.65 ns while maintaining the pulse amplitude at 10 ± 1 V. Finally, the amplified Gaussian signal can be shaped into a monocycle signal by an L-C derivative circuit. The present pulse generator compares favorably with pulse generators fabricated in CMOS ICs, step-recovery diodes, or other discrete devices

    The Impact of cold gas accretion above a mass floor on galaxy scaling relations

    Full text link
    Using the cosmological baryonic accretion rate and normal star formation efficiencies, we present a very simple model for star-forming galaxies (SFGs) that accounts for the mass and redshift dependencies of the SFR-Mass and Tully-Fisher relations from z=2 to the present. The time evolution follows from the fact that each modelled galaxy approaches a steady state where the SFR follows the (net) cold gas accretion rate. The key feature of the model is a halo mass floor M_{min}~10^{11} below which accretion is quenched in order to simultaneously account for the observed slopes of the SFR-Mass and Tully-Fischer relations. The same successes cannot be achieved via a star-formation threshold (or delay) nor by varying the SF efficiency or the feedback efficiency. Combined with the mass ceiling for cold accretion due to virial shock heating, the mass floor M_{min} explains galaxy "downsizing", where more massive galaxies formed earlier and over a shorter period of time. It turns out that the model also accounts for the observed galactic baryon and gas fractions as a function of mass and time, and the cosmic SFR density from z~6 to z=0, which are all resulting from the mass floor M_{min}. The model helps to understand that it is the cosmological decline of accretion rate that drives the decrease of cosmic SFR density between z~2 and z=0 and the rise of the cosmic SFR density allows us to put a constraint on our main parameter M_{min}~10^{11} solar masses. Among the physical mechanisms that could be responsible for the mass floor, we view that photo-ionization feedback (from first in-situ hot stars) lowering the cooling efficiency is likely to play a large role.Comment: 19pages, 14 figures, accepted to ApJ, updated reference

    Optimal treatment allocations in space and time for on-line control of an emerging infectious disease

    Get PDF
    A key component in controlling the spread of an epidemic is deciding where, whenand to whom to apply an intervention.We develop a framework for using data to informthese decisionsin realtime.We formalize a treatment allocation strategy as a sequence of functions, oneper treatment period, that map up-to-date information on the spread of an infectious diseaseto a subset of locations where treatment should be allocated. An optimal allocation strategyoptimizes some cumulative outcome, e.g. the number of uninfected locations, the geographicfootprint of the disease or the cost of the epidemic. Estimation of an optimal allocation strategyfor an emerging infectious disease is challenging because spatial proximity induces interferencebetween locations, the number of possible allocations is exponential in the number oflocations, and because disease dynamics and intervention effectiveness are unknown at outbreak.We derive a Bayesian on-line estimator of the optimal allocation strategy that combinessimulation–optimization with Thompson sampling.The estimator proposed performs favourablyin simulation experiments. This work is motivated by and illustrated using data on the spread ofwhite nose syndrome, which is a highly fatal infectious disease devastating bat populations inNorth America

    Momentum state engineering and control in Bose-Einstein condensates

    Full text link
    We demonstrate theoretically the use of genetic learning algorithms to coherently control the dynamics of a Bose-Einstein condensate. We consider specifically the situation of a condensate in an optical lattice formed by two counterpropagating laser beams. The frequency detuning between the lasers acts as a control parameter that can be used to precisely manipulate the condensate even in the presence of a significant mean-field energy. We illustrate this procedure in the coherent acceleration of a condensate and in the preparation of a superposition of prescribed relative phase.Comment: 9 pages incl. 6 PostScript figures (.eps), LaTeX using RevTeX, submitted to Phys. Rev. A, incl. small modifications, some references adde

    Low-Energy Signals from Kinetic Mixing with a Warped Abelian Hidden Sector

    Full text link
    We investigate the detailed phenomenology of a light Abelian hidden sector in the Randall-Sundrum framework. Relative to other works with light hidden sectors, the main new feature is a tower of hidden Kaluza-Klein vectors that kinetically mix with the Standard Model photon and Z. We investigate the decay properties of the hidden sector fields in some detail, and develop an approach for calculating processes initiated on the ultraviolet brane of a warped space with large injection momentum relative to the infrared scale. Using these results, we determine the detailed bounds on the light warped hidden sector from precision electroweak measurements and low-energy experiments. We find viable regions of parameter space that lead to significant production rates for several of the hidden Kaluza-Klein vectors in meson factories and fixed-target experiments. This offers the possibility of exploring the structure of an extra spacetime dimension with lower-energy probes.Comment: (1+32) Pages, 13 Figures. v2: JHEP version (minor modifications, results unchanged

    Hot Photoluminescence in γ-In2Se3Nanorods

    Get PDF
    The energy relaxation of electrons in γ-In2Se3nanorods was investigated by the excitation-dependent photoluminescence (PL). From the high-energy tail of PL, we determine the electron temperature (Te) of the hot electrons. TheTevariation can be explained by a model in which the longitudinal optical (LO)-phonon emission is the dominant energy relaxation process. The high-quality γ-In2Se3nanorods may be a promising material for the photovoltaic devices

    A systematic review of the literature on the effectiveness of exercise therapy for groin pain in athletes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Athletes competing in sports that require running, changes in direction, repetitive kicking and physical contact are at a relatively higher risk of experiencing episodes of athletic groin pain. To date, there has been no systematic review that aims to inform clinicians about the best available evidence on features of exercise interventions for groin pain in athletes. The primary aim of this systematic review was to evaluate the available evidence on the effectiveness of exercise therapy for groin pain in athletes. The secondary aim of this review was to identify the key features of exercise interventions used in the management of groin pain in an athletic population.</p> <p>Methods</p> <p>MEDLINE, CINAHL, PubMed, SPORTSDiscus, Embase, AMED, Ovid, PEDro, Cochrane Controlled Trials Register and Google Scholar databases were electronically searched. Data relating to research design, sample population, type of sport and exercise intervention was extracted. The methodological evaluation of included studies was conducted by using a modified quantitative critical appraisal tool.</p> <p>Results</p> <p>The search strategy identified 468 studies, 12 of which were potentially relevant. Ultimately five studies were included in this review. Overall the quality of primary research literature was moderate, with only one randomised controlled trial identified. All included studies provided evidence that an exercise intervention may lead to favourable outcomes in terms of return to sport. Four of the five studies reviewed included a strengthening component and most utilised functional, standing positions similar to those required by their sport. No study appropriately reported the intensity of their exercise interventions. Duration of intervention ranged from 3.8 weeks to 16 weeks. All five studies reported the use of one or more co-intervention.</p> <p>Conclusion</p> <p>Best available evidence to date, with its limitations, continues to support common clinical practice of exercise therapy as a key component of rehabilitation for groin pain in athletes. Overall, the available evidence suggests that exercise, particularly strengthening exercise of the hip and abdominal musculature could be an effective intervention for athletes with groin pain. Literature provides foundational evidence that this may need to be in the form of progressive exercises (static to functional) and performed through range. There is currently no clear evidence regarding the most effective intensity and frequency of exercise, because of a lack of reporting in the primary literature.</p

    Cancers in the TREAT Asia HIV Observational Database (TAHOD): a retrospective analysis of risk factors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This retrospective survey describes types of cancers diagnosed in HIV-infected subjects in Asia, and assesses risk factors for cancer in HIV-infected subjects using contemporaneous HIV-infected controls without cancer.</p> <p>Methods</p> <p>TREAT Asia HIV Observational Database (TAHOD) sites retrospectively reviewed clinic medical records to determine cancer diagnoses since 2000. For each diagnosis, the following data were recorded: date, type, stage, method of diagnosis, demographic data, medical history, and HIV-related information. For risk factor analyses, two HIV-infected control subjects without cancer diagnoses were also selected. Cancers were grouped as AIDS-defining cancers (ADCs), and non-ADCs. Non-ADCs were further categorized as being infection related (NADC-IR) and unrelated (NADC-IUR).</p> <p>Results</p> <p>A total of 617 patients were included in this study: 215 cancer cases and 402 controls from 13 sites. The majority of cancer cases were male (71%). The mean age (SD) for cases was 39 (10.6), 46 (11.5) and 44 (13.7) for ADCs, NADC-IURs and NADCs-IR, respectively. The majority (66%) of cancers were ADCs (16% Kaposi sarcoma, 40% non-Hodgkin's lymphoma, and 9% cervical cancer). The most common NADCs were lung (6%), breast (5%) and hepatocellular carcinoma and Hodgkin's lymphoma (2% each). There were also three (1.4%) cases of leiomyosarcoma reported in this study. In multivariate analyses, individuals with CD4 counts above 200 cells/mm<sup>3 </sup>were approximately 80% less likely to be diagnosed with an ADC (p < 0.001). Older age (OR: 1.39, p = 0.001) and currently not receiving antiretroviral treatment (OR: 0.29, p = 0.006) were independent predictors of NADCs overall, and similarly for NADCs-IUR. Lower CD4 cell count and higher CDC stage (p = 0.041) were the only independent predictors of NADCs-IR.</p> <p>Conclusions</p> <p>The spectrum of cancer diagnoses in the Asia region currently does not appear dissimilar to that observed in non-Asian HIV populations. One interesting finding was the cases of leiomyosarcoma, a smooth-muscle tumour, usually seen in children and young adults with AIDS, yet overall quite rare. Further detailed studies are required to better describe the range of cancers in this region, and to help guide the development of screening programmes.</p

    Symmetry and Topology in Superconductors - Odd-frequency pairing and edge states -

    Full text link
    Superconductivity is a phenomenon where the macroscopic quantum coherence appears due to the pairing of electrons. This offers a fascinating arena to study the physics of broken gauge symmetry. However, the important symmetries in superconductors are not only the gauge invariance. Especially, the symmetry properties of the pairing, i.e., the parity and spin-singlet/spin-triplet, determine the physical properties of the superconducting state. Recently it has been recognized that there is the important third symmetry of the pair amplitude, i.e., even or odd parity with respect to the frequency. The conventional uniform superconducting states correspond to the even-frequency pairing, but the recent finding is that the odd-frequency pair amplitude arises in the spatially non-uniform situation quite ubiquitously. Especially, this is the case in the Andreev bound state (ABS) appearing at the surface/interface of the sample. The other important recent development is on the nontrivial topological aspects of superconductors. As the band insulators are classified by topological indices into (i) conventional insulator, (ii) quantum Hall insulator, and (iii) topological insulator, also are the gapped superconductors. The influence of the nontrivial topology of the bulk states appears as the edge or surface of the sample. In the superconductors, this leads to the formation of zero energy ABS (ZEABS). Therefore, the ABSs of the superconductors are the place where the symmetry and topology meet each other which offer the stage of rich physics. In this review, we discuss the physics of ABS from the viewpoint of the odd-frequency pairing, the topological bulk-edge correspondence, and the interplay of these two issues. It is described how the symmetry of the pairing and topological indices determines the absence/presence of the ZEABS, its energy dispersion, and properties as the Majorana fermions.Comment: 91 pages, 38 figures, Review article, references adde
    corecore