87 research outputs found
Non-thermal origin of nonlinear transport across magnetically induced superconductor-metal-insulator transition
We have studied the effect of perpendicular magnetic fields and temperatures
on the nonlinear electronic transport in amorphous Ta superconducting thin
films. The films exhibit a magnetic field induced metallic behavior intervening
the superconductor-insulator transition in the zero temperature limit. We show
that the nonlinear transport in the superconducting and metallic phase is of
non-thermal origin and accompanies an extraordinarily long voltage response
time.Comment: 5 pages, 4 figure
Numerical Simulations of a Protostellar Outflow Colliding with a Dense Molecular Cloud
High-resolution SiO observations of the NGC 1333 IRAS 4A star-forming region
showed a highly collimated outflow with a substantial deflection. The
deflection was suggested to be caused by the interactions of the outflow and a
dense cloud core. To investigate the deflection process of protostellar
outflows, we have carried out three-dimensional hydrodynamic simulations of the
collision of an outflow with a dense cloud. Assuming a power-law type density
distribution of the obstructing cloud, the numerical experiments show that the
deflection angle is mainly determined by the impact parameter and the density
contrast between the outflow and the cloud. The deflection angle is, however,
relatively insensitive to the velocity of the outflow. Using a numerical model
with physical conditions that are particularly suitable for the IRAS 4A system,
we produce a column-density image and a position-velocity diagram along the
outflow, and they are consistent with the observations. Based on our numerical
simulations, if we assume that the initial density and the velocity of the
outflow are \sim 10 \cm3 and \sim 100 \kms, the densities of the dense core
and ambient medium in the IRAS 4A system are most likely to be \sim 10^5 \cm3
and \sim 10^2 \cm3, respectively. We therefore demonstrate through numerical
simulations that the directional variability of the IRAS 4A outflow can be
explained reasonably well using the collision model.Comment: 19 pages, 7 figures, Submitted to ApJ, High resolution version has
been uploaded at http://arcsec.sejong.ac.kr/~chbae
Strong call to safeguard traditional agriculture as habitat for threatened crane species
This Scientific Impact Paper summarizes the changes in policy and practice of crane conservation that have occurred since our 2019 research in the Cheorwon Basin located in the Civilian Control Zone (CCZ) of the Republic of Korea (ROK). Changes in National Policy as well as increased engagement of conservation NGOs have led to more engagement of farmers in safeguarding crane habitat in their fields. Yet the current system of low‐intensity rice farming is dependent on military land‐use restrictions.Marianne und Dr. Fritz Walter Fischer‐StiftungZempelin StiftungPeer Reviewe
An Explicit Scheme for Incorporating Ambipolar Diffusion in a Magnetohydrodynamics Code
We describe a method for incorporating ambipolar diffusion in the strong
coupling approximation into a multidimensional magnetohydrodynamics code based
on the total variation diminishing scheme. Contributions from ambipolar
diffusion terms are included by explicit finite difference operators in a fully
unsplit way, maintaining second order accuracy. The divergence-free condition
of magnetic fields is exactly ensured at all times by a flux-interpolated
constrained transport scheme. The super time stepping method is used to
accelerate the timestep in high resolution calculations and/or in strong
ambipolar diffusion. We perform two test problems, the steady-state oblique
C-type shocks and the decay of Alfv\'en waves, confirming the accuracy and
robustness of our numerical approach. Results from the simulations of the
compressible MHD turbulence with ambipolar diffusion show the flexibility of
our method as well as its ability to follow complex MHD flows in the presence
of ambipolar diffusion. These simulations show that the dissipation rate of MHD
turbulence is strongly affected by the strength of ambipolar diffusion.Comment: 25 pages, 5 figures, ApJS accepte
Cross-National Differences in Victimization : Disentangling the Impact of Composition and Context
Varying rates of criminal victimization across countries are assumed to be the outcome of countrylevel structural constraints that determine the supply ofmotivated o¡enders, as well as the differential composition within countries of suitable targets and capable guardianship. However, previous empirical tests of these ‘compositional’ and ‘contextual’ explanations of cross-national di¡erences
have been performed upon macro-level crime data due to the unavailability of comparable individual-level data across countries. This limitation has had two important consequences for cross-national crime research. First, micro-/meso-level mechanisms underlying cross-national differences cannot be truly inferred from macro-level data. Secondly, the e¡ects of contextual measures (e.g. income inequality) on crime are uncontrolled for compositional heterogeneity. In this
paper, these limitations are overcome by analysing individual-level victimization data across 18 countries from the International CrimeVictims Survey. Results from multi-level analyses on theft and violent victimization indicate that the national level of income inequality is positively related to risk, independent of compositional (i.e. micro- and meso-level) di¡erences. Furthermore, crossnational variation in victimization rates is not only shaped by di¡erences in national context, but
also by varying composition. More speci¢cally, countries had higher crime rates the more they consisted of urban residents and regions with lowaverage social cohesion.
The JCMT BISTRO Survey: A Spiral Magnetic Field in a Hub-filament Structure, Monoceros R2
We present and analyze observations of polarized dust emission at 850 μm toward the central 1
7 1 pc hub-filament structure of Monoceros R2 (Mon R2). The data are obtained with SCUBA-2/POL-2 on the James Clerk Maxwell Telescope (JCMT) as part of the B-fields in Star-forming Region Observations survey. The orientations of the magnetic field follow the spiral structure of Mon R2, which are well described by an axisymmetric magnetic field model. We estimate the turbulent component of the magnetic field using the angle difference between our observations and the best-fit model of the underlying large-scale mean magnetic field. This estimate is used to calculate the magnetic field strength using the Davis–Chandrasekhar–Fermi method, for which we also obtain the distribution of volume density and velocity dispersion using a column density map derived from Herschel data and the C18O (J = 3 - 2) data taken with HARP on the JCMT, respectively. We make maps of magnetic field strengths and mass-to-flux ratios, finding that magnetic field strengths vary from 0.02 to 3.64 mG with a mean value of 1.0 \ub1 0.06 mG, and the mean critical mass-to-flux ratio is 0.47 \ub1 0.02. Additionally, the mean Alfv\ue9n Mach number is 0.35 \ub1 0.01. This suggests that, in Mon R2, the magnetic fields provide resistance against large-scale gravitational collapse, and the magnetic pressure exceeds the turbulent pressure. We also investigate the properties of each filament in Mon R2. Most of the filaments are aligned along the magnetic field direction and are magnetically subcritical
The JCMT BISTRO Survey: Studying the Complex Magnetic Field of L43
We present observations of polarized dust emission at 850 μm from the L43 molecular cloud, which sits in the Ophiuchus cloud complex. The data were taken using SCUBA-2/POL-2 on the James Clerk Maxwell Telescope as a part of the BISTRO large program. L43 is a dense (NH 10
22 2 ~ –1023 cm−2) complex molecular cloud with a submillimeter-bright starless core and two protostellar sources. There appears to be an evolutionary gradient along the isolated filament that L43 is embedded within, with the most evolved source closest to the Sco OB2 association. One of the protostars drives a CO outflow that has created a cavity to the southeast. We see a magnetic field that appears to be aligned with the cavity walls of the outflow, suggesting interaction with the outflow. We also find a magnetic field strength of up to ∼160 ± 30 μG in the main starless core and up to ∼90 ± 40 μG in the more diffuse, extended region. These field strengths give magnetically super- and subcritical values, respectively, and both are found to be roughly trans-Alfvénic. We also present a new method of data reduction for these denser but fainter objects like starless cores
Filamentary Network and Magnetic Field Structures Revealed with BISTRO in the High-mass Star-forming Region NGC 2264: Global Properties and Local Magnetogravitational Configurations
We report 850 μm continuum polarization observations toward the filamentary high-mass star-forming region NGC 2264, taken as part of the B-fields In STar forming Regions Observations large program on the James Clerk Maxwell Telescope. These data reveal a well-structured nonuniform magnetic field in the NGC 2264C and 2264D regions with a prevailing orientation around 30° from north to east. Field strength estimates and a virial analysis of the major clumps indicate that NGC 2264C is globally dominated by gravity, while in 2264D, magnetic, gravitational, and kinetic energies are roughly balanced. We present an analysis scheme that utilizes the locally resolved magnetic field structures, together with the locally measured gravitational vector field and the extracted filamentary network. From this, we infer statistical trends showing that this network consists of two main groups of filaments oriented approximately perpendicular to one another. Additionally, gravity shows one dominating converging direction that is roughly perpendicular to one of the filament orientations, which is suggestive of mass accretion along this direction. Beyond these statistical trends, we identify two types of filaments. The type I filament is perpendicular to the magnetic field with local gravity transitioning from parallel to perpendicular to the magnetic field from the outside to the filament ridge. The type II filament is parallel to the magnetic field and local gravity. We interpret these two types of filaments as originating from the competition between radial collapsing, driven by filament self-gravity, and longitudinal collapsing, driven by the region's global gravity
- …