609 research outputs found

    Targeting B Cell Maturation Antigen (BCMA) in Multiple Myeloma: Potential Uses of BCMA-Based Immunotherapy

    Get PDF
    The approval of the first two monoclonal antibodies targeting CD38 (daratumumab) and SLAMF7 (elotuzumab) in late 2015 for treating relapsed and refractory multiple myeloma (RRMM) was a critical advance for immunotherapies for multiple myeloma (MM). Importantly, the outcome of patients continues to improve with the incorporation of this new class of agents with current MM therapies. However, both antigens are also expressed on other normal tissues including hematopoietic lineages and immune effector cells, which may limit their long-term clinical use. B cell maturation antigen (BCMA), a transmembrane glycoprotein in the tumor necrosis factor receptor superfamily 17 (TNFRSF17), is expressed at significantly higher levels in all patient MM cells but not on other normal tissues except normal plasma cells. Importantly, it is an antigen targeted by chimeric antigen receptor (CAR) T-cells, which have already shown significant clinical activities in patients with RRMM who have undergone at least three prior treatments, including a proteasome inhibitor and an immunomodulatory agent. Moreover, the first anti-BCMA antibody–drug conjugate also has achieved significant clinical responses in patients who failed at least three prior lines of therapy, including an anti-CD38 antibody, a proteasome inhibitor, and an immunomodulatory agent. Both BCMA targeting immunotherapies were granted breakthrough status for patients with RRMM by FDA in Nov 2017. Other promising BCMA-based immunotherapeutic macromolecules including bispecific T-cell engagers, bispecific molecules, bispecific or trispecific antibodies, as well as improved forms of next generation CAR T cells, also demonstrate high anti-MM activity in preclinical and even early clinical studies. Here, we focus on the biology of this promising MM target antigen and then highlight preclinical and clinical data of current BCMA-targeted immunotherapies with various mechanisms of action. These crucial studies will enhance selective anti-MM response, transform the treatment paradigm, and extend disease-free survival in MM

    Composite type A thymoma and diffuse large B-cell lymphoma

    Get PDF
    AbstractThe concurrent occurrence of thymoma and diffuse large B-cell lymphoma in the thymus has not been previously reported. We describe a 74-year-old man who presented with general weakness, neck lymphadenopathy, night sweats, and body weight loss. A right anterior mediastinal mass was found on computed tomography of the chest. The immunohistochemical stains AE1/AE3, CD20, CD3, and MUM-1 confirmed the different components of the mediastinal tumor. A heavy-chain gene clonality assay and light-chain gene clonality assay confirmed the B-cell clonality of the mediastinal tumor and neck lymph node. The patient had received a complete course of chemotherapy, and the result of positron emission tomography–computed tomography showed complete remission. The pathologic report of this mass revealed composite type A thymoma and diffuse large B-cell lymphoma. If concurrent or composite thymoma and lymphoma are suspected, a thorough examination of the thymoma with a combination of ancillary studies is recommended to rule out the possibility of concurrent lymphoma

    Evaluating indoor positioning systems in a shopping mall : the lessons learned from the IPIN 2018 competition

    Get PDF
    The Indoor Positioning and Indoor Navigation (IPIN) conference holds an annual competition in which indoor localization systems from different research groups worldwide are evaluated empirically. The objective of this competition is to establish a systematic evaluation methodology with rigorous metrics both for real-time (on-site) and post-processing (off-site) situations, in a realistic environment unfamiliar to the prototype developers. For the IPIN 2018 conference, this competition was held on September 22nd, 2018, in Atlantis, a large shopping mall in Nantes (France). Four competition tracks (two on-site and two off-site) were designed. They consisted of several 1 km routes traversing several floors of the mall. Along these paths, 180 points were topographically surveyed with a 10 cm accuracy, to serve as ground truth landmarks, combining theodolite measurements, differential global navigation satellite system (GNSS) and 3D scanner systems. 34 teams effectively competed. The accuracy score corresponds to the third quartile (75th percentile) of an error metric that combines the horizontal positioning error and the floor detection. The best results for the on-site tracks showed an accuracy score of 11.70 m (Track 1) and 5.50 m (Track 2), while the best results for the off-site tracks showed an accuracy score of 0.90 m (Track 3) and 1.30 m (Track 4). These results showed that it is possible to obtain high accuracy indoor positioning solutions in large, realistic environments using wearable light-weight sensors without deploying any beacon. This paper describes the organization work of the tracks, analyzes the methodology used to quantify the results, reviews the lessons learned from the competition and discusses its future

    Construction and characterization of an expressed sequenced tag library for the mosquito vector Armigeres subalbatus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The mosquito, <it>Armigeres subalbatus</it>, mounts a distinctively robust innate immune response when infected with the nematode <it>Brugia malayi</it>, a causative agent of lymphatic filariasis. In order to mine the transcriptome for new insight into the cascade of events that takes place in response to infection in this mosquito, 6 cDNA libraries were generated from tissues of adult female mosquitoes subjected to immune-response activation treatments that lead to well-characterized responses, and from aging, naïve mosquitoes. Expressed sequence tags (ESTs) from each library were produced, annotated, and subjected to comparative analyses.</p> <p>Results</p> <p>Six libraries were constructed and used to generate 44,940 expressed sequence tags, of which 38,079 passed quality filters to be included in the annotation project and subsequent analyses. All of these sequences were collapsed into clusters resulting in 8,020 unique sequence clusters or singletons. EST clusters were annotated and curated manually within ASAP (A Systematic Annotation Package for Community Analysis of Genomes) web portal according to BLAST results from comparisons to Genbank, and the <it>Anopheles gambiae </it>and <it>Drosophila melanogaster </it>genome projects.</p> <p>Conclusion</p> <p>The resulting dataset is the first of its kind for this mosquito vector and provides a basis for future studies of mosquito vectors regarding the cascade of events that occurs in response to infection, and thereby providing insight into vector competence and innate immunity.</p

    Repressive Effects of Resveratrol on Androgen Receptor Transcriptional Activity

    Get PDF
    The chemopreventive effects of resveratrol (RSV) on prostate cancer have been well established; the androgen receptor (AR) plays pivotal roles in prostatic tumorigenesis. However, the exact underlying molecular mechanisms about the effects of RSV on AR have not been fully elucidated. A model system is needed to determine whether and how RSV represses AR transcriptional activity.The AR cDNA was first cloned into the retroviral vector pOZ-N and then integrated into the genome of AR-negative HeLa cells to generate the AR(+) cells. The constitutively expressed AR was characterized by monitoring hormone-stimulated nuclear translocation, DNA binding, and transcriptional activation, with the AR(-) cells serving as controls. AR(+) cells were treated with RSV, and both AR protein levels and AR transcriptional activity were measured simultaneously. Chromatin immunoprecipitation (ChIP) assays were used to detect the effects of RSV on the recruitment of AR to its cognate element (ARE).AR in the AR (+) stable cell line functions in a manner similar to that of endogenously expressed AR. Using this model system we clearly demonstrated that RSV represses AR transcriptional activity independently of any effects on AR protein levels. However, neither the hormone-mediated nucleus translocation nor the AR/ARE interaction was affected by RSV treatment.We demonstrated unambiguously that RSV regulates AR target gene expression, at least in part, by repressing AR transcriptional activity. Repressive effects of RSV on AR activity result from mechanisms other than the affects of AR nuclear translocation or DNA binding

    NFATc1 Regulation of TRAIL Expression in Human Intestinal Cells

    Get PDF
    TNF-related apoptosis-inducing ligand (TRAIL; Apo2) has been shown to promote intestinal cell differentiation. Nuclear factor of activated T cells (NFAT) participates in the regulation of a variety of cellular processes, including differentiation. Here, we examined the role of NFAT in the regulation of TRAIL in human intestinal cells. Treatment with a combination of phorbol 12-myristate 13-acetate (PMA) plus the calcium ionophore A23187 (Io) increased NFAT activation and TRAIL expression; pretreatment with the calcineurin inhibitor cyclosporine A (CsA), an antagonist of NFAT signaling, diminished NFAT activation and TRAIL induction. In addition, knockdown of NFATc1, NFATc2, NFATc3, and NFATc4 blocked PMA/Io increased TRAIL protein expression. Expression of NFATc1 activated TRAIL promoter activity and increased TRAIL mRNA and protein expression. Deletion of NFAT binding sites from the TRAIL promoter did not significantly abrogate NFATc1-increased TRAIL promoter activity, suggesting an indirect regulation of TRAIL expression by NFAT activation. Knockdown of NFATc1 increased Sp1 transcription factor binding to the TRAIL promoter and, importantly, inhibition of Sp1, by chemical inhibition or RNA interference, increased TRAIL expression. These studies identify a novel mechanism for TRAIL regulation by which activation of NFATc1 increases TRAIL expression through negative regulation of Sp1 binding to the TRAIL promoter

    Challenges and recent advancements of functionalization of two-dimensional nanostructured molybdenum trioxide and dichalcogenides

    No full text
    Atomically-thin two-dimensional (2D) semiconductors are the thinnest functional semiconducting materials available today. Among them, both molybdenum trioxide and chalcogenides (MT&Ds) represent key components within the family of the different 2D semiconductors for various electronic, optoelectronic and electrochemical applications due to their unique electronic, optical, mechanical and electrochemical properties. However, despite great progress in research dedicated to the development and fabrication of 2D MT&Ds observed within the last decade, there are significant challenges affected their charge transport behavior, fabrication on a large scale as well as high dependence of the carrier mobility on thickness. In this article, we review the recent progress on the carrier mobility engineering of 2D MT&Ds and elaborate devised strategies dedicated to the optimization of MT&Ds properties. Specifically, the latest physical and chemical methods towards the surface functionalization and optimization of the major factors influencing the extrinsic transport at the electrode-2D semiconductor interface are discusse

    Isolation and Characterization of Novel Murine Epiphysis Derived Mesenchymal Stem Cells

    Get PDF
    BACKGROUND: While bone marrow (BM) is a rich source of mesenchymal stem cells (MSCs), previous studies have shown that MSCs derived from mouse BM (BMMSCs) were difficult to manipulate as compared to MSCs derived from other species. The objective of this study was to find an alternative murine MSCs source that could provide sufficient MSCs. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we described a novel type of MSCs that migrates directly from the mouse epiphysis in culture. Epiphysis-derived MSCs (EMSCs) could be extensively expanded in plastic adherent culture, and they had a greater ability for clonogenic formation and cell proliferation than BMMSCs. Under specific induction conditions, EMSCs demonstrated multipotency through their ability to differentiate into adipocytes, osteocytes and chondrocytes. Immunophenotypic analysis demonstrated that EMSCs were positive for CD29, CD44, CD73, CD105, CD166, Sca-1 and SSEA-4, while negative for CD11b, CD31, CD34 and CD45. Notably, EMSCs did not express major histocompatibility complex class I (MHC I) or MHC II under our culture system. EMSCs also successfully suppressed the proliferation of splenocytes triggered by concanavalin A (Con A) or allogeneic splenocytes, and decreased the expression of IL-1, IL-6 and TNF-α in Con A-stimulated splenocytes suggesting their anti-inflammatory properties. Moreover, EMSCs enhanced fracture repair, ameliorated necrosis in ischemic skin flap, and improved blood perfusion in hindlimb ischemia in the in vivo experiments. CONCLUSIONS/SIGNIFICANCES: These results indicate that EMSCs, a new type of MSCs established by our simple isolation method, are a preferable alternative for mice MSCs due to their better growth and differentiation potentialities
    corecore