26 research outputs found

    Fair Streaming Principal Component Analysis: Statistical and Algorithmic Viewpoint

    Full text link
    Fair Principal Component Analysis (PCA) is a problem setting where we aim to perform PCA while making the resulting representation fair in that the projected distributions, conditional on the sensitive attributes, match one another. However, existing approaches to fair PCA have two main problems: theoretically, there has been no statistical foundation of fair PCA in terms of learnability; practically, limited memory prevents us from using existing approaches, as they explicitly rely on full access to the entire data. On the theoretical side, we rigorously formulate fair PCA using a new notion called \emph{probably approximately fair and optimal} (PAFO) learnability. On the practical side, motivated by recent advances in streaming algorithms for addressing memory limitation, we propose a new setting called \emph{fair streaming PCA} along with a memory-efficient algorithm, fair noisy power method (FNPM). We then provide its {\it statistical} guarantee in terms of PAFO-learnability, which is the first of its kind in fair PCA literature. Lastly, we verify the efficacy and memory efficiency of our algorithm on real-world datasets.Comment: 42 pages, 5 figures, 4 tables. Accepted to the 37th Conference on Neural Information Processing Systems (NeurIPS 2023

    PLASTIC: Improving Input and Label Plasticity for Sample Efficient Reinforcement Learning

    Full text link
    In Reinforcement Learning (RL), enhancing sample efficiency is crucial, particularly in scenarios when data acquisition is costly and risky. In principle, off-policy RL algorithms can improve sample efficiency by allowing multiple updates per environment interaction. However, these multiple updates often lead the model to overfit to earlier interactions, which is referred to as the loss of plasticity. Our study investigates the underlying causes of this phenomenon by dividing plasticity into two aspects. Input plasticity, which denotes the model's adaptability to changing input data, and label plasticity, which denotes the model's adaptability to evolving input-output relationships. Synthetic experiments on the CIFAR-10 dataset reveal that finding smoother minima of loss landscape enhances input plasticity, whereas refined gradient propagation improves label plasticity. Leveraging these findings, we introduce the PLASTIC algorithm, which harmoniously combines techniques to address both concerns. With minimal architectural modifications, PLASTIC achieves competitive performance on benchmarks including Atari-100k and Deepmind Control Suite. This result emphasizes the importance of preserving the model's plasticity to elevate the sample efficiency in RL. The code is available at https://github.com/dojeon-ai/plastic.Comment: 26 pages, 6 figures, accepted to NeurIPS 202

    NGL-1/LRRC4C Deletion Moderately Suppresses Hippocampal Excitatory Synapse Development and Function in an Input-Independent Manner

    Get PDF
    Netrin-G ligand-1 (NGL-1), also known as LRRC4C, is a postsynaptic densities (PSDs)-95-interacting postsynaptic adhesion molecule that interacts trans-synaptically with presynaptic netrin-G1. NGL-1 and its family member protein NGL-2 are thought to promote excitatory synapse development through largely non-overlapping neuronal pathways. While NGL-2 is critical for excitatory synapse development in specific dendritic segments of neurons in an input-specific manner, whether NGL-1 has similar functions is unclear. Here, we show that Lrrc4c deletion in male mice moderately suppresses excitatory synapse development and function, but surprisingly, does so in an input-independent manner. While NGL-1 is mainly detected in the stratum lacunosum moleculare (SLM) layer of the hippocampus relative to the stratum radiatum (SR) layer, NGL-1 deletion leads to decreases in the number of PSDs in both SLM and SR layers in the ventral hippocampus. In addition, both SLM and SR excitatory synapses display suppressed short-term synaptic plasticity in the ventral hippocampus. These morphological and functional changes are either absent or modest in the dorsal hippocampus. The input-independent synaptic changes induced by Lrrc4c deletion involve abnormal translocation of NGL-2 from the SR to SLM layer. These results suggest that Lrrc4c deletion moderately suppresses hippocampal excitatory synapse development and function in an input-independent manner

    Measurement of the azimuthal anisotropy of Y(1S) and Y(2S) mesons in PbPb collisions at root s(NN)=5.02 TeV

    Get PDF
    The second-order Fourier coefficients (v(2)) characterizing the azimuthal distributions of Y(1S) and Y(2S) mesons produced in PbPb collisions at root s(NN) = 5.02 TeV are studied. The Y mesons are reconstructed in their dimuon decay channel, as measured by the CMS detector. The collected data set corresponds to an integrated luminosity of 1.7 nb(-1). The scalar product method is used to extract the v2 coefficients of the azimuthal distributions. Results are reported for the rapidity range vertical bar y vertical bar < 2.4, in the transverse momentum interval 0 < pT < 50 GeV/c, and in three centrality ranges of 10-30%, 30-50% and 50-90%. In contrast to the J/psi mesons, the measured v(2) values for the Y mesons are found to be consistent with zero. (C) 2021 The Author(s). Published by Elsevier B.V.Peer reviewe

    Rad50 mediates DNA demethylation to establish pluripotent reprogramming

    No full text
    Regenerative medicine: Protein boosts stem cell generation process Heightened expression of a DNA repair protein improves efficiency when generating induced pluripotent stem cells (iPSCs) for use in regenerative medicine. DNA demethylation – the removal of methyl groups from one of the DNA bases, cytosine – is required for effective reprogramming of cells other than sperm and egg cells to create iPSCs. Ineffective demethylation has been a key challenge for scientists to overcome in generating iPSCs efficiently. Now, Jongpil Kim and co-workers at Dongguk University in Seoul, South Korea, have demonstrated that the DNA repair protein Rad50 plays a regulatory role in DNA demethylation during cell reprogramming. Rad50 interacts with a key enzyme involved in demethylation, boosting the efficiency of the process. The team found that overexpressing Rad50 increased DNA demethylation during reprogramming, enhancing the efficiency of iPSC generation. Blocking Rad50 had the opposite effect

    Perception of Electrostatic Friction Stimuli in Free Surface Exploration

    No full text
    Assuming the use scenario of free exploration on tactile graphics for people with visual impairments, this study investigated how the users perceive electrostatic friction stimuli on contour-based graphical information. We designed and conducted two experiments with 16 participants (8 visually-impaired and 8 sighted). First, we obtained spatial gap detection thresholds between two lines rendered using the electrostatic display. Second, we investigated spatial numerosity judgement on rendered lines on the display. Results demonstrated that the visually-impaired and sighted participants had similar perceptual performance. We summarize the findings and present suggestions for tactile graphics on an electrostatic friction display.1

    Stereoselective Formal Hydroamidation of Si-Substituted Arylacetylenes with DIBAL-H and Isocyanates: Synthesis of (E)- and (Z)-alpha-Silyl-alpha,beta-unsaturated Amides

    No full text
    An efficient and stereoselective method for the synthesis of (E)- and (Z)-alpha-silyl-alpha,beta-unsaturated amides and its synthetic applications are presented herein. The solvent-controlled hydroaluminations of Si-substituted alkynes with DIBAL-H generate diastereomerically enriched alkenylaluminum reagents that are directly reacted with isocyanates at ambient temperature to afford alpha-silyl-alpha,beta-unsaturated amides in high yields with retained stereoselectivity. In particular, this process enables the synthesis of a broad range of (E)-alpha-silyl-alpha,beta-unsaturated amides, which are the less studied isomers. The synthetic utility of this method is highlighted by its short reaction time, ease of purification, easily accessible substrates and reagents, gram-scale synthesis, and the further transformations of C-Si bonds into C-H, C-X, and C-C bonds. © 2020 American Chemical Society.1
    corecore