1,811 research outputs found

    Some Incipient Techniques For Improving Efficiency in Computational Mechanics

    Get PDF
    This contribution presents a review of different techniques available for alleviating simulation cost in computational mechanics. The first one is based on a separated representation of the unknown fields; the second one uses a model reduction based on the Karhunen-Loève decomposition within an adaptive scheme, and the last one is a mixed technique specially adapted for reducing models involving local singularities. These techniques can be applied in a large variety of models

    The proper generalized decomposition for the simulation of delamination using cohesive zone model

    Get PDF
    The use of cohesive zone models is an efficient way to treat the damage, especially when the crack path is known a priori. This is the case in the modeling of delamination in composite laminates. However, the simulations using cohesive zone models are expensive in a computational point of view. When using implicit time integration scheme or when solving static problems, the non-linearity related to the cohesive model requires many iterations before reaching convergence. In explicit approaches, the time step stability condition also requires an important number of iterations. In this article, a new approach based on a separated representation of the solution is proposed. The Proper Generalized Decomposition is used to build the solution. This technique, coupled with a cohesive zone model, allows a significant reduction of the computational cost. The results approximated with the PGD are very close to the ones obtained using the classical finite element approach

    Deterministic solution of the kinetic theory model of colloidal suspensions of structureless particles

    Get PDF
    A direct modeling of colloidal suspensions consists of calculating trajectories of all suspended objects. Due to the large time computing and the large cost involved in such calculations, we consider in this paper another route. Colloidal suspensions are described on a mesoscopic level by a distribution function whose time evolution is governed by a Fokker–Plancklike equation. The difficulty encountered on this route is the high dimensionality of the space in which the distribution function is defined. A novel strategy is used to solve numerically the Fokker–Planck equation circumventing the curse of dimensionality issue. Rheological and morphological predictions of the model that includes both direct and hydrodynamic interactions are presented in different flows

    Vademecum-based GFEM (V-GFEM): optimal enrichment for transient problems

    Get PDF
    This is the accepted version of the following article: [Canales, D., Leygue, A., Chinesta, F., González, D., Cueto, E., Feulvarch, E., Bergheau, J. -M., and Huerta, A. (2016) Vademecum-based GFEM (V-GFEM): optimal enrichment for transient problems. Int. J. Numer. Meth. Engng, 108: 971–989. doi: 10.1002/nme.5240.], which has been published in final form at http://onlinelibrary.wiley.com/doi/10.1002/nme.5240/fullThis paper proposes a generalized finite element method based on the use of parametric solutions as enrichment functions. These parametric solutions are precomputed off-line and stored in memory in the form of a computational vademecum so that they can be used on-line with negligible cost. This renders a more efficient computational method than traditional finite element methods at performing simulations of processes. One key issue of the proposed method is the efficient computation of the parametric enrichments. These are computed and efficiently stored in memory by employing proper generalized decompositions. Although the presented method can be broadly applied, it is particularly well suited in manufacturing processes involving localized physics that depend on many parameters, such as welding. After introducing the vademecum-generalized finite element method formulation, we present some numerical examples related to the simulation of thermal models encountered in welding processes.Peer ReviewedPostprint (author's final draft

    Modeling the kinematics of multi-axial composite laminates as a stacking of 2D TIF plies

    Get PDF
    Thermoplastic composites are widely considered in structural parts. In this paper attention is paid to sheet forming of continuous fiber laminates. In the case of unidirectional prepregs, the ply constitutive equation is modeled as a transversally isotropic fluid, that must satisfy both the fiber inextensibility as well as the fluid incompressibility. When the stacking sequence involves plies with different orientations the kinematics of each ply during the laminate deformation varies significantly through the composite thickness. In our former works we considered two different approaches when simulating the squeeze flow induced by the laminate compression, the first based on a penalty formulation and the second one based on the use of Lagrange multipliers. In the present work we propose an alternative approach that consists in modeling each ply involved in the laminate as a transversally isotropic fluid – TIF - that becomes 2D as soon as incompressibility constraint and plane stress assumption are taken into account. Thus, composites laminates can be analyzed as a stacking of 2D TIF models that could eventually interact by using adequate friction laws at the inter-ply interfaces.Peer ReviewedPostprint (published version

    One and two-fiber orientation kinetic theories of fiber suspensions

    Get PDF
    http://dx.doi.org/10.1016/j.jnnfm.2012.10.009The morphology influencing rheological properties of suspensions of rigid spheres constitutes the flow induced collective ordering of the spheres characterized by two or more sphere distribution functions. When the rigid spheres are replaced by rigid fibers, the collective order in the position of the spheres is replaced by the flow induced orientation of the fibers that suffices to be characterized by one-fiber orientation distribution function. A flow induced collective ordering of fibers (both in position and orientation), that can only be characterized by two or more fiber distribution functions, can still however constitute an important part of the morphology. We show that two types of interaction among fibers, one being the Onsager-type topological interaction entering the free energy and the other the hydrodynamics interaction entering the dissipative part of the time evolution, give indeed rise to a collective order in the orientation influencing the rheology of fiber suspensions

    On the deterministic solution of multidimensional parametric models using the Proper Generalized Decomposition

    Get PDF
    This paper focuses on the efficient solution of models defined in high dimensional spaces. Those models involve numerous numerical challenges because of their associated curse of dimensionality. It is well known that in mesh-based discrete models the complexity (degrees of freedom) scales exponentially with the dimension of the space. Many models encountered in computational science and engineering involve numerous dimensions called configurational coordinates. Some examples are the models encoun- tered in biology making use of the chemical master equation, quantum chemistry involving the solution of the Schrödinger or Dirac equations, kinetic theory descriptions of complex systems based on the solution of the so-called Fokker–Planck equation, stochastic models in which the random variables are included as new coordinates, financial mathematics, etc. This paper revisits the curse of dimensionality and proposes an efficient strategy for circumventing such challenging issue. This strategy, based on the use of a Proper Generalized Decomposition, is specially well suited to treat the multidimensional parametric equations

    Deim-based pgd for multi-parametric nonlinear model reduction

    Get PDF
    A new technique for efficiently solving parametric nonlinear reduced order models in the Proper Generalized Decomposition (PGD) framework is presented here. This technique is based on the Discrete Empirical Interpolation Method (DEIM)[1], and thus the nonlinear term is interpolated using the reduced basis instead of being fully evaluated. The DEIM has already been demonstrated to provide satisfactory results in terms of computational complexity decrease when combined with the Proper Orthogonal Decomposition (POD). However, in the POD case the reduced basis is a posteriori known as it comes from several pre-computed snapshots. On the contrary, the PGD is an a priori model reduction method. This makes the DEIM-PGD coupling rather delicate, because different choices are possible as it is analyzed in this work

    Unified formulation of a family of iterative solvers for power systems analysis

    Get PDF
    This paper illustrates the construction of a new class of iterative solvers for power flow calculations based on the method of Alternating Search Directions. This method is fit to the particular algebraic structure of the power flow problem resulting from the combination of a globally linear set of equations and nonlinear local relations imposed by power conversion devices, such as loads and generators. The choice of the search directions is shown to be crucial for improving the overall robustness of the solver. A noteworthy advantage is that constant search directions yield stationary methods that, in contrast with Newton or Quasi-Newton methods, do not require the evaluation of the Jacobian matrix. Such directions can be elected to enforce the convergence to the high voltage operative solution. The method is explained through an intuitive example illustrating how the proposed generalized formulation is able to include other nonlinear solvers that are classically used for power flow analysis, thus offering a unified view on the topic. Numerical experiments are performed on publicly available benchmarks for large distribution and transmission systems.Peer ReviewedPostprint (author's final draft

    Monitoring a PGD solver for parametric power flow problems with goal-oriented error assessment

    Get PDF
    This is the peer reviewed version of the following article: [García-Blanco, R., Borzacchiello, D., Chinesta, F., and Diez, P. (2017) Monitoring a PGD solver for parametric power flow problems with goal-oriented error assessment. Int. J. Numer. Meth. Engng, 111: 529–552. doi: 10.1002/nme.5470], which has been published in final form at http://onlinelibrary.wiley.com/doi/10.1002/nme.5470/full. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.The parametric analysis of electric grids requires carrying out a large number of Power Flow computations. The different parameters describe loading conditions and grid properties. In this framework, the Proper Generalized Decomposition (PGD) provides a numerical solution explicitly accounting for the parametric dependence. Once the PGD solution is available, exploring the multidimensional parametric space is computationally inexpensive. The aim of this paper is to provide tools to monitor the error associated with this significant computational gain and to guarantee the quality of the PGD solution. In this case, the PGD algorithm consists in three nested loops that correspond to 1) iterating algebraic solver, 2) number of terms in the separable greedy expansion and 3) the alternated directions for each term. In the proposed approach, the three loops are controlled by stopping criteria based on residual goal-oriented error estimates. This allows one for using only the computational resources necessary to achieve the accuracy prescribed by the end- user. The paper discusses how to compute the goal-oriented error estimates. This requires linearizing the error equation and the Quantity of Interest to derive an efficient error representation based on an adjoint problem. The efficiency of the proposed approach is demonstrated on benchmark problems.Peer ReviewedPostprint (author's final draft
    corecore