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ABSTRACT: This contributio presents a reew of different techniques available alleviating simulatior
cost in computational mechanics. The first oneaiseld on a separated representation of the unknelds;f
the second one uses a model reduction based oKatminen-Loéve decomposition within an adaptive
scheme, and the last one is a mixed technique alye@dapted for reducing models involving local
singularities. These techniques can be appliedange variety of models.

Key words: Model Reduction, Separated represemaikiarhunen-Loéve decomposition.

1 INTRODUCTION
2 GENERAL FORM OF THE PROBLEM

Models encountered in computational physics and
engineering, in particular computational mechanicsl.et consider a general field¥ involving two
usually involve too many degrees of freedom, toovariablesr and s (each one defined on a different
many simulation time-steps, too many iterationsspace of dimension 1,2 or 3). Let consider two
(non-linear models, optimization or inverse operatorskC and £ respectively associated to the
denticaton). 100, many pariles (i SOMS variabes ands

ipti imply ex ive simulati [ _
(for example when simulation in real time is IC(HJ(r,s))+[,(qJ(r,s))—0 (1)
envisaged). Some examples of those scenarios dr@r example, if we address the heat equatién
encountered in computational chemistry involvingrepresents the temperatureand s are respectively
large time scale differences (reaction versushe time and the physical coordinat#s,s the first
diffusion), direct numerical simulation of fluidofivs
(analysis of turbulence), kinetic theory descripso
of solid and fluids (including complex fluids) that Laplace operator. However, Eg. (1) can also
usually involve multi-dimensional models with the "éPresent more complex models. Thus, in steady

associated curse of dimensionality problematicState kinetic theory models¥ represents the
virtual surgery, mechanical systems involvingconformational distribution function, andandsthe

localized behavior, ... physical and the conformational coordinates. Irhsuc

In our former works (See [1] and the referenceén()dels the first differential Operator is definedhe
therein) some new strategies of model reduction anysical space, accounting for the advective esfect
computational time saving have been proposed. |And the second one is related to the induced

what follows the main ideas of those techniques ar@]icrostructural evolution that sometimes is modeled
revisited. from and advection-diffusion differential operator.

In other models such as the ones encountered in
quantum mechanics, one find a Laplace operator

order derivative with respect to time, addis the



defined in the conformation space that in this d¢ase pp =j MMTdQ,, N =j NN'dQ,

related to the physical space of each particle & Qs 3)
(electrons or nuclei). Thus, the resulting modeIK:j MKMTdQ,, L:J’ NLNTdQ,

results highly multidimensional, making difficulssi & R

numerical solution. These integrals take into account the specific
In the bead spring chain model (proposed t@gharacter of each operator. For example integration
represent the mechanics of macromolecules) th@y parts is used in second order operators,
variables involved are the connector vectors degni uUPwinding for stabilizing advective terms, ...

the contour length of the chain. The kinetic equrati
in this case involves, in addition to the genera
operators of equation (1), other “coupling” operato
involving in a coupled way the derivatives with |
respect to different conformation coordinates. W(r,s)= zai* F(r)G(s) (4)
For the sake of simplicity, from now on we are i

focusing on the solution of the generic equation (1 which writes in the discrete form:

W (r,8)= Y G FMGN ®)

B-1 Projection stage

In this stage we consider the test functions glwen

3 MULTIDIMENSIONNAL APPROACH _ _ _
Using the discrete form of th# function:

The solution of equation (1) in the multidimensibna X T T

case, in which a grid (or a mesh) of the donfair W(r.s)= Z‘ai MIEN'G (6)
Q,UQs becomes too expensive or simply forbiddenihe variational formulation of the equation (1)uks
needs for new advanced strategies. The existingh n

strategies (sparse grids or stochastic technique& a H,a;, =0 (7)
allow addressing moderate multidimensional =t 1=t

models. In the highly multidimensional caseWhere

alternative strategies are needed. One possib#ly H, =F'KF [G'NG, +F'MF [G'LG  (8)

in defining separated representations and tensqtjs system must be solved taking into account

product approximation basis: some boundary or normality conditions. For
— example, we could consider a first function product
w(r.s) Za_Fi(r)Gl(s) 2) verifying the boundary conditions, and then the

In order to build up this form, a series of project other ones must vanish on the domain boundary (this
and enrichment stages are considered. condition is enforced in the enrichment stage). In

The projection stage consists to find, far given  this case we must enforce=1.
terms of the series the best set of the alpha- ioh
coefficients associated ¥6,,G,,---,F , ,G,. 3.2 Enrichment stage

The enrichment stage consists in finding the best|n this stage we consider the unknown field givgn b
functions R(r), S(9 with respect the problem

variational formulation. W(r,s) = Zai F(NG(9+RNK $ )

The computer implementation of these steps neeqs . ' .

for a discrete representation of all the functions: e*lng the test functions

Fi(r), Gi(9), R(r) and () using for example a 1D, ¥ (1:8)= R(NS(9+ RY S( ¥ (10)

2D or 3D finite element interpolation in their That writes in a discrete form as

associated domain®, and Qs. We use for this . et et N(STM)

purpose the vector andM containing the shape ¥ (r,s)—[R S ]((RTN)M]

functions associated with each space. FingihG;, : .

R and S represent the nodal description of thefThe weal:(fofrmf.of éhe gqtuzattlotn (1).b.ecomes, in the

associated functions. We define the following nxatri ramework of a fixed point strategy, In. -

related to the variational formulation equatiorn (1) For *a givensS (or for a test function in the form
of W(r,s)=R(NYY)

(11)



(KSTNS+MST1LS)R= (n=1,.., PB. These functions are obtained by
(12) maximizing

-3 a (KF,S'NG, +MF S'LG, R
— ( j j j i ) Z{Z“Wlpi }
«  For a giverR (or for a test function in the form A== ';1 5 (16)
of ' (r,s)=R(NS(9) {ZW}
(R'KRN+R"MRL)S= =

whereN is the total number of nodes in the domain
Q.

The maximization ofl with respect to the functions
It must be noticed that the number of the degrées @ is equivalent to enforcedp=0, from which it
freedom involved in such non linear solution is theresults:

n (13)
-3 a(R'KF,NG, +R"MF, LG, )
i=1

sum of the degrees of freedom involved in eachy (N[ P N
discretization (instead the product resulting irsie Z{Z{z Yyl }5(4)} =AY {@pop}, Oop
based discretization strategies). i=1 (j=1ln=1 i=1
Finally, the new approximation functios,.; and whose matrix form writes
Gn+1 are obtained frorR andS after normalization:  sp'kg=1d¢' @, 0dp = k=A@ (17)
1
Fn+1=R(RTMR) 2 Where
. (14) wiow? o oyP
G, =S(S'NS) ? Wwowl o yP
7SS k=QQ", Q=] * * 7 7| (18)
4 ADAPTIVE MODEL REDUCTION Wy W W

. ) . 4.2 A posteriori model reduction
In this section the particular case &€ =§, where P

t denotes the time, is considered. Liet § be the The time discretization of equation (15) writes:

couple of the two variables involved. In the finit N'¥"" =P" (19)
element framework, Eqg. (1) is usually solved withinthat in the case of using an explicit strategy
an incremental procedure. The unknown field atP" =(N-L)¥" (20)

time t is noted byW'(x) and is associated with the From the solutionsP™ one could extract the most
vector representatio®' on Q,. The weak form of significant eigenfunctions (the ones related to the
the problem (1), using the notation introducedhighest eigenvaluesia, @.,... , @. These functions
previously, writes are stored into a matriB which dimensions are
YNV +P LY =0 (15) (N,r) (in general r<<N). This matrix allow to
To obtain the evolution of the unknown field duringdescribe the evolution of the unknown field using a
the time an implicit or explicit time integration reduced number of degrees of freedermgteadN).
scheme could be used. But in general, the highhus, writing

number of degrees of freedom involved, makesP"=Ba" (21)
difficult the problem solution at each time stepewh equation (19) reduced to:

semi-implicit or  fully-implicit schemes are grygg™ =gTp" (22)
considered. The main idea of the Karhunen-Loeve——~—~ =y

()
decomposition is to represent the unknown field

using a reduced number of functions expressed an3 A priori model reduction
the whole domaify.
The main drawback of the a posteriori model
4.1 Karhunen-Loeve décomposition reduction is the necessity to make at least one
_ N o _ _ simulation using the fully finite element descrapti
This decomposition lies in looking for the optimal gesjdes, one could address the question related to
functions ¢x) to represent the discrete fieldsW¥"



the validity of the basi$. The purpose of the “a which are the respective degrees of freedom in the
priori” model reduction [2] is the possibility of domainsQ;andQ,. Thus the finite element problem
defining an adaptive strategy to build up the reduc could be rewritten as

basis during the model time evolution. . N, N, ‘1’1 L, L,|(¥,

Consequently, we must check the quality of the " |l o' |*| | |y =0 (24)

reduced solution at certain time steps. For this” 2t "2 2 T2

purpose we compute the residual, as proposed in [3Pver the domairQ; the “a priori” model reduction

R =N¥Y™ -pP"=NBa™ -B'P" (23) described in the previous section could be apphed.

If the norm of this residual exceeds a given toleea set of reduced basis function are incorporatedhén t
the basis must be enriched using some functions @patrix B. A model reduction ove®, is made thanks

the Krylov subspaces generated by the residual, ari@l the next definitions
then the solution evolution is recomputed using ther,, =B'N, B

just updated approximation basis. This procedur(? _RT

. ) : : ,=BL,B (25)
continues until reaching convergence (that is, a
small enough residual norm). ¥, =Ba

It is obvious that successive enrichments couldvhich allows writing the initial matrix system (24)
increase the number of the approximation functionsas

To avoid this unfavorable effect, a Karhunen-Loéven a +l,a,=-B'N ¥ ~B'L ¥,
decomposition is performed when the convergenCt'sz‘Pz_HLZZ\P2=_N Ba~-L Ba

of the enrichment procedure is reached. ; ] _
Thus at least in the regid®; the computing cost has
been significantly reduced. The residual calculation
5 TOWARDS A NEW HYBRID STRATEGY is performed over the whole doméilx and for the

_ _ _ _ ~enrichment of the basis, only the values of the
This last section deals with models involvingesidual ovef; are retained.

localized singularities or discontinuities, beirtet

solution far from these singular regions smooth
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